
1 Monotone Sequences

Definition 1. A sequence (sn) is called:

• increasing if sn ≤ sn+1 for all n ∈ N,

• decreasing if sn ≥ sn+1 for all n ∈ N.

Increasing and decreasing sequences are collectively called monotone sequences.

Theorem 1 (Monotone Convergence Theorem). Every bounded monotone se-
quence converges.

Proof. Let (sn) be a bounded increasing sequence. Let S = {sn : n ∈ N} and
u = supS ∈ R. We claim limn→∞ sn = u.

For any ϵ > 0, since u− ϵ is not an upper bound for S, there exists N such
that sN > u − ϵ. Since (sn) is increasing, for all n ≥ N we have sN ≤ sn ≤ u.
Therefore, |sn − u| < ϵ for all n ≥ N .

The proof for decreasing sequences is analogous.

Example 1. Consider the sequence defined by:

s1 =
√
2, sn =

s2n−1 + 2

2sn−1
for n ≥ 2.

By mathematical induction, we can show that sn > sn+1 for all n, so the se-
quence is decreasing and bounded below. Hence, the limit exists. Let limn→∞ sn =
s. Then:

2s · s = s2 + 2 ⇒ s2 = 2 ⇒ s =
√
2.

2 Decimal Expansions

Consider a decimal number of the form:

k.d1d2d3 . . .

where k ≥ 0 is an integer and 0 ≤ di ≤ 9 are digits. Define the sequence:

sn = k +
d1
10

+
d2
102

+ · · ·+ dn
10n

.

Then (sn) is increasing and bounded above by k+1. Therefore, (sn) converges
to some real number a.

Example 2. The sequence sn = 0. 99 . . . 9︸ ︷︷ ︸
n times

= 1− 1
10n converges to 1.

Theorem 2. If (sn) is unbounded and increasing, then limn→∞ sn = +∞.
Similarly, if (sn) is unbounded and decreasing, then limn→∞ sn = −∞.

Proof. Suppose (sn) is unbounded and increasing. Then for any M > 0, there
exists N such that sN > M . Since (sn) is increasing, sn ≥ sN > M for all
n ≥ N . Hence, limn→∞ sn = +∞.
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3 Limit Superior and Limit Inferior

Definition 2. For a sequence (sn), define:

aN = sup{sn : n ≥ N},
bN = inf{sn : n ≥ N}.

Then the limit superior and limit inferior are defined as:

lim sup
n→∞

sn = lim
N→∞

aN ,

lim inf
n→∞

sn = lim
N→∞

bN .

Note that (aN ) is decreasing and (bN ) is increasing, so these limits always
exist (possibly ±∞).

Theorem 3. Let (sn) be a sequence.

1. If limn→∞ sn exists (finite or infinite), then:

lim inf
n→∞

sn = lim
n→∞

sn = lim sup
n→∞

sn.

2. If lim infn→∞ sn = lim supn→∞ sn (finite or infinite), then limn→∞ sn
exists and equals this common value.

Proof. (1) Suppose limn→∞ sn = s ∈ R. For any ϵ > 0, there exists N such
that |sn − s| < ϵ for all n ≥ N . Then:

s− ϵ ≤ bN ≤ sn ≤ aN ≤ s+ ϵ.

Taking limits as N → ∞, we get:

s− ϵ ≤ lim inf
n→∞

sn ≤ lim sup
n→∞

sn ≤ s+ ϵ.

Since ϵ > 0 is arbitrary, the result follows.
(2) Suppose lim infn→∞ sn = lim supn→∞ sn = L. Then for any ϵ > 0, there

exists N such that for all n ≥ N :

L− ϵ ≤ bN ≤ sn ≤ aN ≤ L+ ϵ.

Hence, |sn − L| < ϵ for all n ≥ N , so limn→∞ sn = L.

4 Cauchy Sequences

Definition 3. A sequence (sn) is called a Cauchy sequence if for every ϵ > 0,
there exists N such that for all m,n ≥ N :

|sn − sm| < ϵ.
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Theorem 4. Every convergent sequence is Cauchy.

Proof. Suppose limn→∞ sn = s. For any ϵ > 0, there exists N such that |sn −
s| < ϵ/2 for all n ≥ N . Then for all m,n ≥ N :

|sn − sm| ≤ |sn − s|+ |s− sm| < ϵ

2
+

ϵ

2
= ϵ.

Lemma 5. Every Cauchy sequence is bounded.

Proof. Let ϵ = 1. There exists N such that |sn − sm| < 1 for all m,n ≥ N . In
particular, for n ≥ N :

|sn| ≤ |sn − sN |+ |sN | < 1 + |sN |.

Let M = max{|s1|, . . . , |sN−1|, 1 + |sN |}. Then |sn| ≤ M for all n.

Theorem 6 (Cauchy Criterion). A sequence (sn) converges if and only if it is
Cauchy.

Proof. (⇒) Already proved.
(⇐) Suppose (sn) is Cauchy. Then it is bounded. Let:

a = lim sup
n→∞

sn, b = lim inf
n→∞

sn.

We will show a = b. For any ϵ > 0, there exists N such that |sn − sm| < ϵ/2 for
all m,n ≥ N . Fix m ≥ N . Then:

sm − ϵ

2
≤ sn ≤ sm +

ϵ

2
for all n ≥ N.

Taking supremum and infimum over n ≥ N , we get:

sm − ϵ

2
≤ bN ≤ aN ≤ sm +

ϵ

2
.

Then:
0 ≤ a− b ≤ aN − bN ≤ ϵ.

Since ϵ > 0 is arbitrary, a = b. Hence, limn→∞ sn exists.
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