1 Monotone Sequences

Definition 1. A sequence (s_n) is called:

- increasing if $s_n \leq s_{n+1}$ for all $n \in \mathbb{N}$,
- decreasing if $s_n \geq s_{n+1}$ for all $n \in \mathbb{N}$.

Increasing and decreasing sequences are collectively called **monotone** sequences.

Theorem 1 (Monotone Convergence Theorem). Every bounded monotone sequence converges.

Proof. Let (s_n) be a bounded increasing sequence. Let $S = \{s_n : n \in \mathbb{N}\}$ and $u = \sup S \in \mathbb{R}$. We claim $\lim_{n \to \infty} s_n = u$.

For any $\epsilon > 0$, since $u - \epsilon$ is not an upper bound for S, there exists N such that $s_N > u - \epsilon$. Since (s_n) is increasing, for all $n \ge N$ we have $s_N \le s_n \le u$. Therefore, $|s_n - u| < \epsilon$ for all $n \ge N$.

The proof for decreasing sequences is analogous.

Example 1. Consider the sequence defined by:

$$s_1 = \sqrt{2}, \quad s_n = \frac{s_{n-1}^2 + 2}{2s_{n-1}} \quad \text{for } n \ge 2.$$

By mathematical induction, we can show that $s_n > s_{n+1}$ for all n, so the sequence is decreasing and bounded below. Hence, the limit exists. Let $\lim_{n\to\infty} s_n = s$. Then:

$$2s \cdot s = s^2 + 2 \quad \Rightarrow \quad s^2 = 2 \quad \Rightarrow \quad s = \sqrt{2}.$$

2 Decimal Expansions

Consider a decimal number of the form:

$$k.d_1d_2d_3\ldots$$

where $k \geq 0$ is an integer and $0 \leq d_i \leq 9$ are digits. Define the sequence:

$$s_n = k + \frac{d_1}{10} + \frac{d_2}{10^2} + \dots + \frac{d_n}{10^n}.$$

Then (s_n) is increasing and bounded above by k+1. Therefore, (s_n) converges to some real number a.

Example 2. The sequence
$$s_n = 0.\underbrace{99...9}_{n \text{ times}} = 1 - \frac{1}{10^n}$$
 converges to 1.

Theorem 2. If (s_n) is unbounded and increasing, then $\lim_{n\to\infty} s_n = +\infty$. Similarly, if (s_n) is unbounded and decreasing, then $\lim_{n\to\infty} s_n = -\infty$.

Proof. Suppose (s_n) is unbounded and increasing. Then for any M>0, there exists N such that $s_N>M$. Since (s_n) is increasing, $s_n\geq s_N>M$ for all $n\geq N$. Hence, $\lim_{n\to\infty}s_n=+\infty$.

3 Limit Superior and Limit Inferior

Definition 2. For a sequence (s_n) , define:

$$a_N = \sup\{s_n : n \ge N\},\$$

 $b_N = \inf\{s_n : n \ge N\}.$

Then the limit superior and limit inferior are defined as:

$$\limsup_{n \to \infty} s_n = \lim_{N \to \infty} a_N,$$
$$\liminf_{n \to \infty} s_n = \lim_{N \to \infty} b_N.$$

Note that (a_N) is decreasing and (b_N) is increasing, so these limits always exist (possibly $\pm \infty$).

Theorem 3. Let (s_n) be a sequence.

1. If $\lim_{n\to\infty} s_n$ exists (finite or infinite), then:

$$\liminf_{n \to \infty} s_n = \lim_{n \to \infty} s_n = \limsup_{n \to \infty} s_n.$$

2. If $\liminf_{n\to\infty} s_n = \limsup_{n\to\infty} s_n$ (finite or infinite), then $\lim_{n\to\infty} s_n$ exists and equals this common value.

Proof. (1) Suppose $\lim_{n\to\infty} s_n = s \in \mathbb{R}$. For any $\epsilon > 0$, there exists N such that $|s_n - s| < \epsilon$ for all $n \ge N$. Then:

$$s - \epsilon \le b_N \le s_n \le a_N \le s + \epsilon$$
.

Taking limits as $N \to \infty$, we get:

$$s - \epsilon \le \liminf_{n \to \infty} s_n \le \limsup_{n \to \infty} s_n \le s + \epsilon.$$

Since $\epsilon > 0$ is arbitrary, the result follows.

(2) Suppose $\liminf_{n\to\infty} s_n = \limsup_{n\to\infty} s_n = L$. Then for any $\epsilon > 0$, there exists N such that for all $n \geq N$:

$$L - \epsilon \le b_N \le s_n \le a_N \le L + \epsilon.$$

Hence, $|s_n - L| < \epsilon$ for all $n \ge N$, so $\lim_{n \to \infty} s_n = L$.

4 Cauchy Sequences

Definition 3. A sequence (s_n) is called a **Cauchy sequence** if for every $\epsilon > 0$, there exists N such that for all $m, n \geq N$:

$$|s_n - s_m| < \epsilon$$
.

Theorem 4. Every convergent sequence is Cauchy.

Proof. Suppose $\lim_{n\to\infty} s_n = s$. For any $\epsilon > 0$, there exists N such that $|s_n - s| < \epsilon/2$ for all $n \ge N$. Then for all $m, n \ge N$:

$$|s_n - s_m| \le |s_n - s| + |s - s_m| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Lemma 5. Every Cauchy sequence is bounded.

Proof. Let $\epsilon = 1$. There exists N such that $|s_n - s_m| < 1$ for all $m, n \ge N$. In particular, for $n \ge N$:

$$|s_n| \le |s_n - s_N| + |s_N| < 1 + |s_N|.$$

Let $M = \max\{|s_1|, \dots, |s_{N-1}|, 1 + |s_N|\}$. Then $|s_n| \le M$ for all n.

Theorem 6 (Cauchy Criterion). A sequence (s_n) converges if and only if it is Cauchy.

Proof. (\Rightarrow) Already proved.

 (\Leftarrow) Suppose (s_n) is Cauchy. Then it is bounded. Let:

$$a = \limsup_{n \to \infty} s_n, \quad b = \liminf_{n \to \infty} s_n.$$

We will show a = b. For any $\epsilon > 0$, there exists N such that $|s_n - s_m| < \epsilon/2$ for all $m, n \ge N$. Fix $m \ge N$. Then:

$$s_m - \frac{\epsilon}{2} \le s_n \le s_m + \frac{\epsilon}{2}$$
 for all $n \ge N$.

Taking supremum and infimum over $n \geq N$, we get:

$$s_m - \frac{\epsilon}{2} \le b_N \le a_N \le s_m + \frac{\epsilon}{2}.$$

Then:

$$0 \le a - b \le a_N - b_N \le \epsilon.$$

Since $\epsilon > 0$ is arbitrary, a = b. Hence, $\lim_{n \to \infty} s_n$ exists.