
1 Subsequences

Definition 1. Let (sn) be a sequence and let (nk) be a strictly increasing se-
quence of natural numbers. Then the sequence (snk

) is called a subsequence
of (sn).

Example 1. Let (sn) = ( 1n ) = 1, 1
2 ,

1
3 ,

1
4 , . . .. If (nk) = 1, 3, 8, 10, . . ., then the

corresponding subsequence is (snk
) = 1, 1

3 ,
1
8 ,

1
10 , . . ..

2 Subsequential Limits

Theorem 1. Let (sn) be a sequence and t ∈ R.

1. There exists a subsequence of (sn) converging to t if and only if for every
ϵ > 0, the set {n ∈ N : |sn − t| < ϵ} is infinite.

2. If (sn) is unbounded above, then it has a subsequence converging to +∞.

3. If (sn) is unbounded below, then it has a subsequence converging to −∞.

Proof. (1) (⇐) Suppose for every ϵ > 0, the set {n ∈ N : |sn− t| < ϵ} is infinite.
We construct a subsequence converging to t as follows:

Let ϵ1 = 1. Since Ω1 = {n ∈ N : |sn − t| < 1} is infinite, pick n1 ∈ Ω1.
Let ϵ2 = 1

2 . Since Ω2 = {n ∈ N : |sn − t| < 1
2} is infinite, pick n2 ∈ Ω2 with

n2 > n1.
Continue this process: for each k ∈ N, let ϵk = 1

k . Since Ωk = {n ∈ N :
|sn − t| < 1

k} is infinite, pick nk ∈ Ωk with nk > nk−1.
This gives a strictly increasing sequence (nk) such that |snk

− t| < 1
k for all

k. Hence, limk→∞ snk
= t.

(⇒) If a subsequence converges to t, then for any ϵ > 0, infinitely many
terms satisfy |snk

− t| < ϵ.

3 Existence of Monotone Subsequences

Theorem 2. Every sequence has a monotone subsequence.

Proof. A term sn is called dominant if sn > sm for all m > n.
Case 1: There are infinitely many dominant terms. Then these terms form

a strictly decreasing subsequence.
Case 2: There are only finitely many dominant terms. Pick n1 beyond all

dominant terms. Since sn1
is not dominant, there exists n2 > n1 such that

sn2
≥ sn1

. Since sn2
is not dominant, there exists n3 > n2 such that sn3

≥ sn2
.

Continuing this process, we obtain an increasing subsequence.

Theorem 3 (Bolzano-Weierstrass Theorem). Every bounded sequence has a
convergent subsequence.

1



Proof. By the previous theorem, every sequence has a monotone subsequence.
If the original sequence is bounded, then this monotone subsequence is also
bounded. By the Monotone Convergence Theorem, it converges.

4 Subsequential Limits and Limit Superior/Inferior

Definition 2. A subsequential limit of (sn) is the limit of any convergent
subsequence of (sn).

Example 2. For the sequence sn = (−1)n, the subsequential limits are 1 and
−1.

Theorem 4. For any sequence (sn), there exists a monotone subsequence whose
limit is lim supn→∞ sn. Similarly, there exists a monotone subsequence whose
limit is lim infn→∞ sn.

Proof. Let t = lim supn→∞ sn and aN = sup{sn : n ≥ N}. Then limN→∞ aN =
t.

We show that for every ϵ > 0, the set {n : |sn − t| < ϵ} is infinite. Suppose
not. Then there exists ϵ > 0 such that only finitely many sn satisfy |sn− t| < ϵ.
But then for large N , aN ≤ t− ϵ or aN ≥ t+ ϵ, contradicting limN→∞ aN = t.

Now construct a subsequence converging to t as in the proof of Theorem
2.1.

Theorem 5. Let S be the set of all subsequential limits of (sn). Then:

supS = lim sup
n→∞

sn and inf S = lim inf
n→∞

sn.

Proof. We show supS = lim supn→∞ sn. Let t = lim supn→∞ sn. By the previ-
ous theorem, t ∈ S, so t ≤ supS.

Now let s ∈ S. Then there exists a subsequence (snk
) converging to s. For

each k, snk
≤ ank

= sup{sn : n ≥ nk}. Taking limits:

s = lim
k→∞

snk
≤ lim

k→∞
ank

= t.

Hence, supS ≤ t. Therefore, supS = t.
The proof for inf S = lim infn→∞ sn is similar.

Theorem 6. The set S of subsequential limits is closed.

Proof. Let (tn) be a sequence in S ∩ R converging to t. We show t ∈ S.
For any ϵ > 0, there exists tn ∈ (t − ϵ, t + ϵ). Choose δ > 0 such that

(tn − δ, tn + δ) ⊆ (t − ϵ, t + ϵ). Since tn is a subsequential limit, the set {m :
sm ∈ (tn − δ, tn + δ)} is infinite. Hence, {m : sm ∈ (t− ϵ, t+ ϵ)} is also infinite.
Therefore, we can construct a subsequence converging to t.
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