1 Subsequences

Definition 1. Let (s,) be a sequence and let (ny) be a strictly increasing se-
quence of natural numbers. Then the sequence (sy,) is called a subsequence

of (sn)-

Example 1. Let (s,,) = () =1,
corresponding subsequence is (Sp, ) =

2 Subsequential Limits

Theorem 1. Let (s,,) be a sequence and t € R.

1. There exists a subsequence of (s,) converging to t if and only if for every
€ >0, the set {n € N: |s,, — t| < €} is infinite.

2. If (syn) is unbounded above, then it has a subsequence converging to +oo.
3. If (sy) is unbounded below, then it has a subsequence converging to —oo.

Proof. (1) («=) Suppose for every € > 0, the set {n € N : |s,, —t| < €} is infinite.
We construct a subsequence converging to ¢ as follows:

Let €5 = 1. Since Q) = {n € N : |s,, — t| < 1} is infinite, pick ny € ;.

Let eg = % Since Qo ={n eN: s, — t| < %} is infinite, pick ny € Qo with
ng > Nj.

Continue this process: for each k € N, let ¢, = % Since Q = {n € N :
[sn —t] < %} is infinite, pick ng € Qp with ng > ng_1.

This gives a strictly increasing sequence (ny) such that |s,, —t| < 1 for all
k. Hence, limy_, o0 Sp,, = 1.

(=) If a subsequence converges to t, then for any € > 0, infinitely many
terms satisfy |s,, —t| <e. O

3 Existence of Monotone Subsequences

Theorem 2. FEvery sequence has a monotone subsequence.

Proof. A term s, is called dominant if s,, > s,, for all m > n.

Case 1: There are infinitely many dominant terms. Then these terms form
a strictly decreasing subsequence.

Case 2: There are only finitely many dominant terms. Pick n; beyond all
dominant terms. Since s,, is not dominant, there exists ny > ny such that
Sny = Sp,y . Olnce Sp, is not dominant, there exists n3 > ng such that s,, > sp,.
Continuing this process, we obtain an increasing subsequence. O

Theorem 3 (Bolzano-Weierstrass Theorem). Every bounded sequence has a
convergent subsequence.



Proof. By the previous theorem, every sequence has a monotone subsequence.
If the original sequence is bounded, then this monotone subsequence is also
bounded. By the Monotone Convergence Theorem, it converges. O

4 Subsequential Limits and Limit Superior/Inferior

Definition 2. A subsequential limit of (s,) is the limit of any convergent
subsequence of (sp)-

Example 2. For the sequence s, = (—1)", the subsequential limits are 1 and
—1.

Theorem 4. For any sequence (sy,), there exists a monotone subsequence whose
limiat 4s imsup,,_, .. Sn. Sitmilarly, there exists a monotone subsequence whose
ltmit s lim inf,,_, o Sy,

Proof. Let t = limsup,,_, ., s, and ay = sup{s, : n > N}. Then limy_, o ay =
t.

We show that for every e > 0, the set {n : |s,, — ¢| < €} is infinite. Suppose
not. Then there exists € > 0 such that only finitely many s,, satisfy |s, — | < e.
But then for large N, ay <t —¢€ or ay >t + ¢, contradicting limy .. ay = t.

Now construct a subsequence converging to ¢ as in the proof of Theorem
2.1. O

Theorem 5. Let S be the set of all subsequential limits of (s,). Then:

sup S = limsups, and infS =liminfs,.
n—00 n—00
Proof. We show sup S = limsup,,_, ., Sn. Let t =limsup,,_, ., $n. By the previ-
ous theorem, t € S, sot < supS.
Now let s € S. Then there exists a subsequence (s, ) converging to s. For
each k, sp, < an, =sup{s, : n > ny}. Taking limits:

s= lim s,, < lim a,, =t.
k—o0 k—o0

Hence, sup S < t. Therefore, sup S = t¢.
The proof for inf S = lim inf,, .. s, is similar. O

Theorem 6. The set S of subsequential limits is closed.

Proof. Let (t,) be a sequence in S NR converging to t. We show t € S.

For any € > 0, there exists t, € (t —€,t +¢). Choose 6 > 0 such that
(tn — 0,tn +9) C (t — €,t +€). Since t, is a subsequential limit, the set {m :
Sm € (tn — d,t, + 0)} is infinite. Hence, {m : s, € (t —€,t+€)} is also infinite.
Therefore, we can construct a subsequence converging to ¢. O



