
Limit Superior

1 Limit Superior and Products of Sequences

Theorem 1. Suppose limn→∞ Sn = S, where 0 < S < ∞. Then

lim sup
n→∞

(Sntn) = S · lim sup
n→∞

tn.

Proof. We show both inequalities.
Let β = lim supn→∞ tn.

Case 1: β is finite. There exists a subsequence tnk
such that tnk

→ β. Since
Snk

→ S, we have
Snk

tnk
→ S · β.

Therefore,
S · β ≤ lim sup

n→∞
(Sntn).

Case 2: β = +∞. There exists a subsequence tnk
→ +∞. Since Snk

→ S >
0, we have

Snk
tnk

→ +∞,

so the inequality holds.

Case 3: β = −∞. Then S · β = −∞, and the inequality is trivial.
Now we prove the reverse inequality. Ignoring finitely many terms, assume

Sn ̸= 0 for all n. Then

lim
n→∞

1

Sn
=

1

S
.

Replacing Sn by 1
Sn

and tn by Sntn in the previous result, we get

lim sup
n→∞

tn = lim sup
n→∞

(
1

Sn
· (Sntn)

)
≥ 1

S
· lim sup

n→∞
(Sntn).

Multiplying both sides by S gives

lim sup
n→∞

(Sntn) ≤ S · lim sup
n→∞

tn.

This completes the proof.
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2 Root Test and Ratio Test

Theorem 2. Let {sn} be a sequence of nonzero real numbers. Define

L = lim sup
n→∞

∣∣∣∣sn+1

sn

∣∣∣∣ .
Then

lim sup
n→∞

|sn|1/n ≤ L.

Moreover, if limn→∞

∣∣∣ sn+1

sn

∣∣∣ exists and equals L, then

lim
n→∞

|sn|1/n = L.

Proof. Let α = lim supn→∞ |sn|1/n. We want to show α ≤ L.
If L = +∞, the result is obvious. Assume L < ∞. Pick any L1 > L. Then

there exists N such that

sup

{∣∣∣∣sn+1

sn

∣∣∣∣ : n ≥ N

}
< L1,

so ∣∣∣∣sn+1

sn

∣∣∣∣ < L1 for all n ≥ N.

For n > N , we have

|sn| =
∣∣∣∣ sn
sn−1

∣∣∣∣ · ∣∣∣∣sn−1

sn−2

∣∣∣∣ · · · ∣∣∣∣sN+1

sN

∣∣∣∣ · |sN | < Ln−N
1 |sN |.

Taking the n-th root:

|sn|1/n < L
1−N/n
1 |sN |1/n.

Taking limit superior:

α ≤ lim sup
n→∞

L
1−N/n
1 |sN |1/n = L1.

Since L1 > L was arbitrary, we conclude α ≤ L.
If the limit of the ratios exists and equals L, then a similar argument shows

that limn→∞ |sn|1/n = L.
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