13. Metric Spaces and Topology

We work on \mathbb{R} as an ordered field. However, in \mathbb{R}^n (for n > 1), there is no natural ordering, so we cannot use the absolute value directly. Instead, we base our analysis on the concept of distance.

Definition 1. Let S be a set. A function $d: S \times S \to \mathbb{R}$ is called a **distance** function or a metric if it satisfies:

D1.
$$d(x,x) = 0$$
 for all $x \in S$, and $d(x,y) > 0$ for $x \neq y$

D2.
$$d(x,y) = d(y,x)$$
 for all $x,y \in S$ (symmetry)

D3.
$$d(x,z) \le d(x,y) + d(y,z)$$
 for all $x,y,z \in S$ (triangle inequality)

The pair (S, d) is called a **metric space**.

Example 1. On \mathbb{R} , d(a,b) = |a-b| is a metric.

Example 2. On \mathbb{R}^n , for $\vec{x} = (x_1, \dots, x_n)$ and $\vec{y} = (y_1, \dots, y_n)$, define:

$$d(\vec{x}, \vec{y}) = \left[\sum_{j=1}^{n} (x_j - y_j)^2 \right]^{\frac{1}{2}}$$

This is the Euclidean metric on \mathbb{R}^n .

Topology

A topology on a set S is a collection σ of subsets of S such that:

- 1. $\emptyset \in \sigma$ and $S \in \sigma$
- 2. The union of any subcollection of elements in σ is in σ
- 3. The intersection of any finitely many elements in σ is in σ

Elements in σ are called **open sets** of S. A subset $U \subset S$ is called **closed** if its complement is open.

Example 3. *Let* $S = \{a, b, c\}$ *. Then:*

$$\sigma = \{\emptyset, S, \{a, b\}\}\$$

is a topology on S.

We are particularly interested in topologies induced by metrics.

Definition 2. Let (S,d) be a metric space. A subset $U \subset S$ is said to be **open** if for every $s \in U$, there exists $\delta > 0$ such that the open ball:

$$B(s,\delta) = \{ s' \in S \mid d(s,s') < \delta \}$$

is contained in U.

The collection of all such open sets forms a topology, called the **metric** topology.

Example 4. In (\mathbb{R}, d) with d(a, b) = |a - b|:

- (1, 2) is open
- $(-\infty,1)$ and $(2,\infty)$ are open
- [1, 2] is closed
- Open sets are unions of open intervals

Convergence and Completeness

Definition 3. A sequence (ξ_n) in a topological space (ζ, σ) converges to ξ if for any open set $U \in \sigma$ containing ξ , there exists N such that for all n > N, $\xi_n \in U$.

Lemma 1. Suppose the topology is induced by a metric d. A sequence (s_n) in ζ converges to s if and only if:

$$\lim_{n \to \infty} d(s_n, s) = 0$$

Definition 4. A sequence (s_n) in a metric space (ζ, d) is a **Cauchy sequence** if for every $\epsilon > 0$, there exists N such that for all m, n > N, $d(s_m, s_n) < \epsilon$.

Definition 5. A metric space (S, d) is **complete** if every Cauchy sequence in S converges to a point in S.

Completeness of \mathbb{R}^k

Our goal is to show that (\mathbb{R}^k, d^2) is complete, where d^2 is the Euclidean metric.

We use superscripts to denote sequences: (\vec{x}^n) , where $\vec{x}^n = (x_1^n, x_2^n, \dots, x_k^n)$.

Lemma 2. A sequence (\vec{x}^n) in \mathbb{R}^k converges if and only if for each $j = 1, \ldots, k$, the sequence (x_j^n) converges as $n \to \infty$.

Lemma 3. A sequence (\vec{x}^n) in \mathbb{R}^k is a Cauchy sequence if and only if for each $j = 1, \ldots, k$, the sequence (x_i^n) is a Cauchy sequence in \mathbb{R} .

Theorem 1. \mathbb{R}^k (with respect to the Euclidean distance) is complete.

Proof. Consider a Cauchy sequence (\vec{x}^n) in \mathbb{R}^k . Then for each $j = 1, \ldots, k$, the sequence (x_j^n) is a Cauchy sequence in \mathbb{R} , hence converges to some x_j . Then (\vec{x}^n) converges to (x_1, \ldots, x_k) .

Bounded Sets and Bolzano-Weierstrass Theorem

Definition 6. A set S in \mathbb{R}^n is **bounded** if there exists M > 0 such that:

$$\max\{|x_j|: j=1,\ldots,k\} \le M \quad \text{for all } \vec{x} \in S$$

Theorem 2 (Bolzano-Weierstrass Theorem). Every bounded sequence in \mathbb{R}^k has a convergent subsequence.

Proof. Let (x^n) be a bounded sequence in \mathbb{R}^k . Then for each j, the sequence (x_j^n) is bounded. By the one-dimensional Bolzano-Weierstrass theorem, we can select a subsequence of (x^n) , still denoted by (x^n) , such that (x_1^n) converges. Repeating this process for each coordinate, we obtain a subsequence where (x_i^n) converges for each $j = 1, \ldots, k$. Then (x^n) converges.

Properties of Closed Sets

Proposition 1. Let (S, \mathcal{J}) be a topological space with topology induced by a metric d on S. Let $E \subset S$.

(a) E is closed if and only if $E = \overline{E}$ (where \overline{E} is the closure of E, defined as the intersection of all closed subsets containing E)

- (b) E is closed if and only if it contains the limit of every convergent sequence of points in E
- (c) $s \in \overline{E}$ if and only if s is the limit of some sequence of points in E

Theorem 3. Let (F_n) be a decreasing sequence of closed, bounded, non-empty sets in \mathbb{R}^k . Then $F = \bigcap_{n=1}^{\infty} F_n$ is also closed, bounded, and non-empty.

Proof. We have:

$$F = \bigcap_{n=1}^{\infty} F_n = \left(\bigcup_{n=1}^{\infty} F_n^c\right)^c$$

Since each F_n^c is open, their union is open, and thus F is closed as the complement of an open set. F is clearly bounded.

To show F is non-empty: For each n, select $x_n \in F_n$. By the Bolzano-Weierstrass theorem, there exists a convergent subsequence (x_{n_m}) converging to x_0 . For any n_0 , if m is large enough so that $n_m > n_0$, then $x_{n_m} \in F_{n_0}$. Since F_{n_0} is closed, $x_0 \in F_{n_0}$ by Proposition (b). Hence $x_0 \in F$.

Cantor Set

The **Cantor set** F is constructed as follows:

- $F_1 = [0, 1]$
- $F_2 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$
- $F_3 = [0, \frac{1}{9}] \cup [\frac{2}{9}, \frac{1}{3}] \cup [\frac{2}{3}, \frac{7}{9}] \cup [\frac{8}{9}, 1]$
- Continue this process, where F_{n+1} is obtained by removing the open middle third of each interval in F_n

The Cantor set $F = \bigcap_{n=1}^{\infty} F_n$ has the following properties:

- The length of F_{n+1} is $\frac{2}{3}$ times the length of F_n , so the length of F_n is $(\frac{2}{3})^n \to 0$
- F has measure zero
- F does not contain any open interval
- \bullet F is uncountable

We can construct a surjective map $\Phi: F \to [0,1]$ by taking ternary expansions with digits 0 and 2 and converting them to binary expansions. If F were countable, then [0,1] would be countable, which is a contradiction.

Compactness

Definition 7. Let (S, \mathcal{J}) be a topological space and $E \subset S$. A collection \mathcal{U} of open sets is called an **open cover** of E if $E \subset \bigcup_{U \in \mathcal{U}} U$.

A **subcover** of \mathcal{U} is a subcollection $\mathcal{U}' \subset \mathcal{U}$ that is still an open cover of E.

We say $E \subset S$ is **compact** if every open cover of E has a finite subcover.

Theorem 4 (Heine-Borel Theorem). A subset E of \mathbb{R}^k is compact if and only if it is closed and bounded.