
13. Metric Spaces and Topology

We work on R as an ordered field. However, in Rn (for n > 1), there is no
natural ordering, so we cannot use the absolute value directly. Instead, we
base our analysis on the concept of distance.

Definition 1. Let S be a set. A function d : S×S → R is called a distance
function or a metric if it satisfies:

D1. d(x, x) = 0 for all x ∈ S, and d(x, y) > 0 for x ̸= y

D2. d(x, y) = d(y, x) for all x, y ∈ S (symmetry)

D3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ S (triangle inequality)

The pair (S, d) is called a metric space.

Example 1. On R, d(a, b) = |a− b| is a metric.

Example 2. On Rn, for x⃗ = (x1, . . . , xn) and y⃗ = (y1, . . . , yn), define:

d(x⃗, y⃗) =

[
n∑

j=1

(xj − yj)
2

] 1
2

This is the Euclidean metric on Rn.

Topology

A topology on a set S is a collection σ of subsets of S such that:

1. ∅ ∈ σ and S ∈ σ

2. The union of any subcollection of elements in σ is in σ

3. The intersection of any finitely many elements in σ is in σ

Elements in σ are called open sets of S. A subset U ⊂ S is called closed if
its complement is open.

Example 3. Let S = {a, b, c}. Then:

σ = {∅, S, {a, b}}

is a topology on S.
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We are particularly interested in topologies induced by metrics.

Definition 2. Let (S, d) be a metric space. A subset U ⊂ S is said to be
open if for every s ∈ U , there exists δ > 0 such that the open ball:

B(s, δ) = {s′ ∈ S | d(s, s′) < δ}

is contained in U .

The collection of all such open sets forms a topology, called the metric
topology.

Example 4. In (R, d) with d(a, b) = |a− b|:

• (1, 2) is open

• (−∞, 1) and (2,∞) are open

• [1, 2] is closed

• Open sets are unions of open intervals

Convergence and Completeness

Definition 3. A sequence (ξn) in a topological space (ζ, σ) converges to ξ if
for any open set U ∈ σ containing ξ, there exists N such that for all n > N ,
ξn ∈ U .

Lemma 1. Suppose the topology is induced by a metric d. A sequence (sn)
in ζ converges to s if and only if:

lim
n→∞

d(sn, s) = 0

Definition 4. A sequence (sn) in a metric space (ζ, d) is a Cauchy se-
quence if for every ϵ > 0, there exists N such that for all m,n > N ,
d(sm, sn) < ϵ.

Definition 5. A metric space (S, d) is complete if every Cauchy sequence
in S converges to a point in S.
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Completeness of Rk

Our goal is to show that (Rk, d2) is complete, where d2 is the Euclidean
metric.

We use superscripts to denote sequences: (x⃗n), where x⃗n = (xn
1 , x

n
2 , . . . , x

n
k).

Lemma 2. A sequence (x⃗n) in Rk converges if and only if for each j =
1, . . . , k, the sequence (xn

j ) converges as n → ∞.

Lemma 3. A sequence (x⃗n) in Rk is a Cauchy sequence if and only if for
each j = 1, . . . , k, the sequence (xn

j ) is a Cauchy sequence in R.

Theorem 1. Rk (with respect to the Euclidean distance) is complete.

Proof. Consider a Cauchy sequence (x⃗n) in Rk. Then for each j = 1, . . . , k,
the sequence (xn

j ) is a Cauchy sequence in R, hence converges to some xj.
Then (x⃗n) converges to (x1, . . . , xk).

Bounded Sets and Bolzano-Weierstrass Theorem

Definition 6. A set S in Rn is bounded if there exists M > 0 such that:

max{|xj| : j = 1, . . . , k} ≤ M for all x⃗ ∈ S

Theorem 2 (Bolzano-Weierstrass Theorem). Every bounded sequence in Rk

has a convergent subsequence.

Proof. Let (xn) be a bounded sequence in Rk. Then for each j, the sequence
(xn

j ) is bounded. By the one-dimensional Bolzano-Weierstrass theorem, we
can select a subsequence of (xn), still denoted by (xn), such that (xn

1 ) con-
verges. Repeating this process for each coordinate, we obtain a subsequence
where (xn

j ) converges for each j = 1, . . . , k. Then (xn) converges.

Properties of Closed Sets

Proposition 1. Let (S,J ) be a topological space with topology induced by a
metric d on S. Let E ⊂ S.

(a) E is closed if and only if E = E (where E is the closure of E, defined
as the intersection of all closed subsets containing E)
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(b) E is closed if and only if it contains the limit of every convergent se-
quence of points in E

(c) s ∈ E if and only if s is the limit of some sequence of points in E

Theorem 3. Let (Fn) be a decreasing sequence of closed, bounded, non-empty
sets in Rk. Then F = ∩∞

n=1Fn is also closed, bounded, and non-empty.

Proof. We have:
F = ∩∞

n=1Fn = (∪∞
n=1F

c
n)

c

Since each F c
n is open, their union is open, and thus F is closed as the

complement of an open set. F is clearly bounded.
To show F is non-empty: For each n, select xn ∈ Fn. By the Bolzano-

Weierstrass theorem, there exists a convergent subsequence (xnm) converging
to x0. For any n0, if m is large enough so that nm > n0, then xnm ∈ Fn0 .
Since Fn0 is closed, x0 ∈ Fn0 by Proposition (b). Hence x0 ∈ F .

Cantor Set

The Cantor set F is constructed as follows:

• F1 = [0, 1]

• F2 = [0, 1
3
] ∪ [2

3
, 1]

• F3 = [0, 1
9
] ∪ [2

9
, 1
3
] ∪ [2

3
, 7
9
] ∪ [8

9
, 1]

• Continue this process, where Fn+1 is obtained by removing the open
middle third of each interval in Fn

The Cantor set F = ∩∞
n=1Fn has the following properties:

• The length of Fn+1 is 2
3
times the length of Fn, so the length of Fn is

(2
3
)n → 0

• F has measure zero

• F does not contain any open interval

• F is uncountable

We can construct a surjective map Φ : F → [0, 1] by taking ternary
expansions with digits 0 and 2 and converting them to binary expansions. If
F were countable, then [0, 1] would be countable, which is a contradiction.
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Compactness

Definition 7. Let (S,J ) be a topological space and E ⊂ S. A collection U
of open sets is called an open cover of E if E ⊂

⋃
U∈U U .

A subcover of U is a subcollection U ′ ⊂ U that is still an open cover of
E.

We say E ⊂ S is compact if every open cover of E has a finite subcover.

Theorem 4 (Heine-Borel Theorem). A subset E of Rk is compact if and
only if it is closed and bounded.
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