
Lecture Notes on Alternating Series

Harmonic Series and p-Series

Example 1 (Harmonic Series). The harmonic series
∑∞

n=1
1
n diverges.

Proof (Method 1 - Integral Test):
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As N → ∞, log(N + 1) → +∞, so
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n = +∞.
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Theorem 1 (p-Series Convergence). The series
∑

1
np :

• Converges if p > 1

• Diverges if 0 < p ≤ 1

Proof for p > 1:
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So the partial sums are bounded above.
Proof for 0 < p ≤ 1: Since 1

np ≥ 1
n for 0 < p ≤ 1 and

∑
1
n diverges,

∑
1
np

also diverges by comparison.

Alternating Series

Theorem 2 (Alternating Series Test). If an > 0 for all n, (an) is decreasing,
and limn→∞ an = 0, then the alternating series

∞∑
n=1

(−1)n+1an

converges.

Example 2. The alternating harmonic series
∑ (−1)n

n converges.
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Proof of Alternating Series Test: Let Sn =
∑n

k=1(−1)k+1ak. For m >
n:

|Sm − Sn| =

∣∣∣∣∣
m∑

k=n+1

(−1)kak

∣∣∣∣∣ = |an+1 − an+2 + an+3 − · · · ± am|

Consider two cases:
Case 1: The sum has an even number of terms

|Sm − Sn| = (an+1 − an+2) + (an+3 − an+4) + · · ·+ (am−1 − am) ≤ an+1

Case 2: The sum has an odd number of terms

|Sm − Sn| = an+1 − (an+2 − an+3)− · · · − (am−1 − am) ≤ an+1

In both cases, |Sm − Sn| ≤ an+1. Since limn→∞ an = 0, the sequence (Sn)
is Cauchy and therefore converges.
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