1 Continuity of Functions

Let f be a function whose domain is a subset of \mathbb{R} .

Definition 1. Let $x_0 \in dom(f)$. The function f is said to be **continuous at** x_0 if for every sequence (x_n) in dom(f) that converges to x_0 , we have

$$\lim_{n \to \infty} f(x_n) = f(x_0).$$

The function f is said to be **continuous** if it is continuous at all $x \in dom(f)$.

Theorem 1 (ε - δ Criterion). Let $x_0 \in dom(f)$. Then f is continuous at x_0 if and only if for every $\varepsilon > 0$, there exists $\delta > 0$ such that for all $x \in dom(f)$ with $|x - x_0| < \delta$, we have

$$|f(x) - f(x_0)| < \varepsilon$$
.

Proof. (\Leftarrow) Suppose the ε - δ condition holds. Let (x_n) be a sequence in dom(f) with $x_n \to x_0$. For any $\varepsilon > 0$, choose $\delta > 0$ such that $|x - x_0| < \delta$ implies $|f(x) - f(x_0)| < \varepsilon$. Since $x_n \to x_0$, there exists N such that for all n > N, $|x_n - x_0| < \delta$. Then $|f(x_n) - f(x_0)| < \varepsilon$ for all n > N, so $f(x_n) \to f(x_0)$.

(\Rightarrow) We prove the contrapositive. Suppose the ε - δ condition fails. Then there exists $\varepsilon_0 > 0$ such that for every $\delta > 0$, there is some $x \in \text{dom}(f)$ with $|x - x_0| < \delta$ but $|f(x) - f(x_0)| \ge \varepsilon_0$. Taking $\delta = \frac{1}{n}$ for $n \in \mathbb{N}$, we obtain a sequence (x_n) in dom(f) with $|x_n - x_0| < \frac{1}{n}$ but $|f(x_n) - f(x_0)| \ge \varepsilon_0$. Then $x_n \to x_0$ but $f(x_n) \not\to f(x_0)$, so f is not continuous at x_0 .

2 Examples

Example 1. Let $f(x) = 2x^2 + 1$. Then f is continuous on \mathbb{R} .

Proof. Let $x_0 \in \mathbb{R}$. Then

$$f(x) - f(x_0) = 2x^2 - 2x_0^2 = 2(x + x_0)(x - x_0).$$

For any $\varepsilon > 0$, let

$$\delta = \min\left\{1, \frac{\varepsilon}{2(2|x_0|+1)}\right\}.$$

If $|x - x_0| < \delta$, then

$$\begin{split} |f(x) - f(x_0)| &= 2|x + x_0||x - x_0| \\ &\leq 2(|x| + |x_0|)\delta \\ &\leq 2(2|x_0| + \delta)\delta \quad \text{(since } |x| \leq |x_0| + \delta < |x_0| + 1) \\ &\leq 2(2|x_0| + 1) \cdot \frac{\varepsilon}{2(2|x_0| + 1)} = \varepsilon. \end{split}$$

Hence f is continuous at x_0 .

3 Properties of Continuous Functions

Theorem 2. If f is continuous, then:

- 1. |f| is continuous.
- 2. kf is continuous for any $k \in \mathbb{R}$.

Proof. Let $x_0 \in \text{dom}(f)$.

1. For any $\varepsilon > 0$, there exists $\delta > 0$ such that $|x - x_0| < \delta$ implies $|f(x) - f(x_0)| < \varepsilon$. Then

$$||f(x)| - |f(x_0)|| \le |f(x) - f(x_0)| < \varepsilon.$$

Hence |f| is continuous at x_0 .

2. For any $\varepsilon > 0$, there exists $\delta > 0$ such that $|x - x_0| < \delta$ implies

$$|f(x) - f(x_0)| < \frac{\varepsilon}{|k| + 1}.$$

Then

$$|kf(x) - kf(x_0)| = |k||f(x) - f(x_0)| < |k| \cdot \frac{\varepsilon}{|k| + 1} < \varepsilon.$$

Hence kf is continuous at x_0 .

Theorem 3. Let f and g be continuous at x_0 . Then:

- 1. f + g is continuous at x_0 .
- 2. f g is continuous at x_0 .
- 3. f/g is continuous at x_0 if $g(x_0) \neq 0$.

Proof. Let (x_n) be a sequence in $dom(f) \cap dom(g)$ with $x_n \to x_0$.

1.

$$\lim_{n \to \infty} (f+g)(x_n) = \lim_{n \to \infty} [f(x_n) + g(x_n)]$$

$$= \lim_{n \to \infty} f(x_n) + \lim_{n \to \infty} g(x_n)$$

$$= f(x_0) + g(x_0) = (f+g)(x_0).$$

- 2. Similar to (i).
- 3. Standard result from calculus.

Theorem 4 (Composition). If f is continuous at x_0 and g is continuous at $f(x_0)$, then $g \circ f$ is continuous at x_0 .