1 Boundedness and Extreme Values of Continuous Functions

Definition 1. A function f is **bounded** if there exists M > 0 such that $|f(x)| \le M$ for all x in its domain.

Theorem 1 (Boundedness Theorem). If f is continuous on [a,b], then f is bounded.

Proof. Suppose for contradiction that f is not bounded. Then there exists a sequence (x_k) in [a,b] such that $f(x_k) \to \infty$. Since [a,b] is compact, by Bolzano-Weierstrass, there exists a convergent subsequence $(x_{k_l}) \to x_0 \in [a,b]$. By continuity:

$$\lim_{l \to \infty} f(x_{k_l}) = f(x_0) < \infty,$$

which contradicts $f(x_k) \to \infty$.

Theorem 2 (Extreme Value Theorem). If f is continuous on [a,b], then f attains its maximum and minimum values on [a,b].

Proof. Let $M = \sup\{f(x) : x \in [a,b]\}$, which is finite by the boundedness theorem. There exists a sequence (y_n) in [a,b] such that:

$$M - \frac{1}{n} \le f(y_n) \le M.$$

Then $\lim_{n\to\infty} f(y_n) = M$. By Bolzano-Weierstrass, there exists a convergent subsequence $(y_{n_k}) \to y_0 \in [a, b]$. By continuity:

$$\lim_{k \to \infty} f(y_{n_k}) = f(y_0) = M.$$

Thus f attains its maximum at y_0 . The proof for the minimum is similar. \square

Theorem 3 (Intermediate Value Theorem). If f is continuous on [a,b] and $f(a) \neq f(b)$, then for any y between f(a) and f(b), there exists $x \in (a,b)$ such that f(x) = y.

Proof. Assume without loss of generality that f(a) < f(b). Let y satisfy f(a) < y < f(b). Define:

$$S = \{x \in [a, b] : f(x) < y\}.$$

Since $a \in S$, S is non-empty. Let $x_0 = \sup S \leq b$.

Since $x_0 - \frac{1}{n}$ is not an upper bound for S, there exists $x_n \in S$ such that:

$$x_0 - \frac{1}{n} \le x_n \le x_0.$$

Then $x_n \to x_0$, and by continuity $f(x_n) \to f(x_0)$. Since $f(x_n) < y$ for all n, we have $f(x_0) \le y$.

Also, $x_0 + \frac{1}{n} > x_0$, so $x_0 + \frac{1}{n} \notin S$, hence $f(x_0 + \frac{1}{n}) \ge y$. Taking the limit as $n \to \infty$, we get $f(x_0) \ge y$.

Therefore,
$$f(x_0) = y$$
.

Corollary 3.1. If f is continuous and I is an interval, then f(I) is either a point or an interval.

Example. Let $f:[0,1] \to [0,1]$ be continuous. Then there exists $x_0 \in [0,1]$ such that $f(x_0) = x_0$ (fixed point).

Proof. Define g(x) = f(x) - x. Then:

$$g(0) = f(0) \ge 0$$
, $g(1) = f(1) - 1 \le 0$.

If g(0) = 0, then f(0) = 0 and $x_0 = 0$. If g(1) = 0, then f(1) = 1 and $x_0 = 1$. Otherwise, g(1) < 0 < g(0), so by the Intermediate Value Theorem, there exists $x_0 \in (0,1)$ such that $g(x_0) = 0$, i.e., $f(x_0) = x_0$.