
1 Operations on Continuous Functions

Theorem 1 (Composition). If f is continuous at x0 and g is continuous at
f(x0), then g ◦ f is continuous at x0.

Proof. Let (xn) be a sequence with xn → x0. By continuity of f :

f(xn) → f(x0).

By continuity of g:
g(f(xn)) → g(f(x0)).

Thus (g ◦ f)(xn) → (g ◦ f)(x0), so g ◦ f is continuous at x0.

Theorem 2. If f and g are continuous at x0, then max(f, g) is continuous at
x0.

Proof. We have the identity:

max(f, g) =
1

2
(f + g) +

1

2
|f − g|.

Since f and g are continuous at x0, so are f + g and f − g. The absolute
value function is continuous, so |f − g| is continuous. Therefore, max(f, g) is
continuous at x0.

2 Inverse Functions

Theorem 3. Let f be a continuous strictly increasing function on some interval
I. Then f(I) = J is an interval. Let f−1 : J → I be the inverse of f .

Proof. Since f is strictly increasing and continuous, it is one-to-one, and by the
Intermediate Value Theorem, its image J = f(I) is an interval.

For any y ∈ J , there exists a unique x ∈ I such that f(x) = y. Define
f−1(y) = x.

To show f−1 is strictly increasing: let y1, y2 ∈ J with y1 > y2, and let
x1 = f−1(y1), x2 = f−1(y2). If x1 ≤ x2, then since f is strictly increasing,
f(x1) ≤ f(x2), i.e., y1 ≤ y2, which is a contradiction. Hence x1 > x2, so f−1 is
strictly increasing.

The continuity of f−1 follows from the fact that the inverse of a continuous
strictly monotone function on an interval is continuous.

3 Characterization of One-to-One Continuous Func-
tions

Theorem 4. Let f be a one-to-one continuous function on an interval I. Then
f is strictly monotonic (either strictly increasing or strictly decreasing).
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Proof. Here one-to-one means: f(x) = f(x′) ⇒ x = x′.
Suppose f is not strictly monotonic. Then there exist a < b < c in I such

that either:

1. f(b) < min{f(a), f(c)}, or

2. f(b) > max{f(a), f(c)}.

In either case, by the Intermediate Value Theorem, f takes some value twice,
contradicting injectivity. Hence f must be strictly monotonic.

4 Uniform Continuity

Definition 1. Let S ⊆ dom(f). The function f is continuous on S if for
every x0 ∈ S and every ϵ > 0, there exists δ > 0 such that for all x ∈ S with
|x− x0| < δ, we have |f(x)− f(x0)| < ϵ.

Here, δ may depend on both ϵ and x0.

Definition 2. A function f is uniformly continuous on S if for every ϵ >
0, there exists δ > 0 such that for all x, x′ ∈ S with |x − x′| < δ, we have
|f(x)− f(x′)| < ϵ.

Here, δ depends only on ϵ, not on the particular points in S.

Example. The function f(x) = 1
x on (0, 1) is continuous but not uniformly

continuous.

Theorem 5. If f is continuous on [a, b] (where a, b ∈ R), then f is uniformly
continuous on [a, b].

Proof. Suppose for contradiction that f is not uniformly continuous on [a, b].
Then there exists ϵ0 > 0 such that for every n ∈ N, there exist xn, yn ∈ [a, b]
with:

|xn − yn| <
1

n
but |f(xn)− f(yn)| ≥ ϵ0.

By Bolzano-Weierstrass, there exists a convergent subsequence (xnk
) → x0 ∈

[a, b]. Since |xnk
− ynk

| < 1
nk

, we also have ynk
→ x0.

By continuity:

lim
k→∞

f(xnk
) = f(x0) = lim

k→∞
f(ynk

).

But this contradicts |f(xnk
)− f(ynk

)| ≥ ϵ0 for all k.
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