1 Operations on Continuous Functions

Theorem 1 (Composition). If f is continuous at xo and g is continuous at
f(z0), then g o f is continuous at xg.

Proof. Let (z,) be a sequence with x,, — . By continuity of f:

f(@n) = f(xo).
By continuity of g:
9(f(xn)) = g(f (x0))-
Thus (go f)(zn) = (g0 f)(x0), so g o f is continuous at xg. O

Theorem 2. If f and g are continuous at xo, then max(f,g) is continuous at
Zo-

Proof. We have the identity:

max(f.g) = 5 (7 +9) + 317 = ol

Since f and g are continuous at xzg, so are f 4+ g and f — g. The absolute
value function is continuous, so |f — ¢| is continuous. Therefore, max(f, g) is
continuous at xg. O

2 Inverse Functions

Theorem 3. Let f be a continuous strictly increasing function on some interval
I. Then f(I)=J is an interval. Let f=*:J — I be the inverse of f.

Proof. Since f is strictly increasing and continuous, it is one-to-one, and by the
Intermediate Value Theorem, its image J = f(I) is an interval.

For any y € J, there exists a unique x € I such that f(z) = y. Define
fy) ==

To show f~! is strictly increasing: let yi,yo € J with y1 > %o, and let
1 = f7 Y1), v2 = f1(y2). If 21 < a9, then since f is strictly increasing,
f(x1) < f(x2), ie., y1 < ya, which is a contradiction. Hence z1 > 2, so f~1 is
strictly increasing.

The continuity of f~! follows from the fact that the inverse of a continuous
strictly monotone function on an interval is continuous. O

3 Characterization of One-to-One Continuous Func-
tions

Theorem 4. Let [ be a one-to-one continuous function on an interval I. Then
f is strictly monotonic (either strictly increasing or strictly decreasing).



Proof. Here one-to-one means: f(z) = f(z') =z =2'.
Suppose f is not strictly monotonic. Then there exist a < b < ¢ in I such
that either:

L. f(b) < min{f(a), f(c)}, or
2. f(b) > max{ f(a), £(c)}.

In either case, by the Intermediate Value Theorem, f takes some value twice,
contradicting injectivity. Hence f must be strictly monotonic. O

4 Uniform Continuity

Definition 1. Let S C dom(f). The function [ is continuous on S if for
every xg € S and every € > 0, there exists § > 0 such that for all x € S with
| — xo| < 0, we have |f(z) — f(zo)] <.

Here, 6 may depend on both € and xg.

Definition 2. A function f is uniformly continuous on S if for every e >
0, there exists 6 > 0 such that for all x,2’ € S with |z — 2’| < §, we have
|f(z) = f(@')] <e.

Here, 6 depends only on €, not on the particular points in S.

Example. The function f(z) = L on (0,1) is continuous but not uniformly
continuous.

Theorem 5. If f is continuous on [a,b] (where a,b € R), then f is uniformly
continuous on [a, b].

Proof. Suppose for contradiction that f is not uniformly continuous on [a, b].
Then there exists ¢g > 0 such that for every n € N, there exist z,,,y, € [a,]
with:

o =l <5 bt 1fn) = fly)] 2 0

By Bolzano-Weierstrass, there exists a convergent subsequence (z,,) — xg €
[a,b]. Since |z, — yn,| < niw we also have y,, — xo.
By continuity:

k—o0 —00

But this contradicts | f(xn, ) — f(yn, )| > €o for all k. O



