
1 Uniform Continuity on a Closed Interval

Theorem 1. If f is continuous on [a, b], where a, b ∈ R, then f is uniformly
continuous on [a, b].

Proof. Suppose not. Then

∃ϵ > 0,∀δ > 0,∃x, y ∈ [a, b] such that |x− y| < δ but |f(x)− f(y)| ≥ ϵ.

Let δ = 1
n . Then there exist sequences (xn), (yn) ⊂ [a, b] such that

|xn − yn| <
1

n
and |f(xn)− f(yn)| ≥ ϵ.

By the Bolzano–Weierstrass theorem, there exists a convergent subsequence
(xnk

) → x∞ ∈ [a, b]. Then
lim
k→∞

ynk
= x∞.

By continuity,
f(x∞) = lim

k→∞
f(xnk

) = lim
k→∞

f(ynk
),

so
lim
k→∞

(f(xnk
)− f(ynk

)) = 0,

contradicting |f(xnk
)− f(ynk

)| ≥ ϵ.

2 Connectedness of Intervals

Lemma 1. Let A ⊂ [a, b] be both closed and open. Then A = ∅ or A = [a, b].

Proof. Suppose A ̸= ∅ and A ̸= [a, b]. Let s = supA. Since A is closed,
s ∈ A. But A is open, so there exists an open interval around s contained in A,
contradicting that s = supA.

3 Compactness of Closed Intervals

Theorem 2. The interval [a, b] is compact.

Proof. Let {Ui} be an open cover of [a, b]. Define

S = {s ∈ [a, b] : [a, s] can be covered by finitely many Ui}.

Then a ∈ S, so S ̸= ∅. Let M = supS. Then M ∈ [a, b], and there exists Ui0

such that M ∈ Ui0 . Pick ϵ > 0 such that (M − ϵ,M + ϵ) ⊂ Ui0 . Then ∃s ∈ S
with s > M − ϵ, so [a, s] is finitely covered, and adding Ui0 covers [a,M + ϵ

2 ],
contradicting M = supS. Hence b ∈ S.
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4 Alternative Proof of Uniform Continuity

Suppose f is continuous at x0 ∈ [a, b]. Then

∀ϵ > 0,∃δ > 0 such that x ∈ [a, b], |x− x0| < δ ⇒ |f(x)− f(x0)| <
ϵ

2
.

Now, for any x′
0 ∈ [a, b], define δ′ = 1

2δ(x0). Then if |x− x′
0| < δ′, we have

|f(x)− f(x′
0)| ≤ |f(x)− f(x0)|+ |f(x0)− f(x′

0)|.

But |x0 − x′
0| < δ

2 = δ′, so |f(x0)− f(x′
0)| < ϵ

2 , and

|x− x0| ≤ |x− x′
0|+ |x′

0 − x0| ≤ δ′ +
δ

2
= δ,

so |f(x)− f(x0)| < ϵ
2 , hence |f(x)− f(x′

0)| < ϵ.

Thus, for each x0 ∈ [a, b], the interval (x0 − δ
2 , x0 + δ

2 ) ∩ [a, b] is an open
cover of [a, b]. By compactness, there exists a finite subcover U1, . . . , UN . For
each Ui, let δi be the corresponding δ, and take δ = min{δ1, . . . , δN}. Then f
is uniformly continuous.

Example 1. The function f(x) = 1
x is uniformly continuous on [ 12 , 5].

5 Non-Uniform Continuity

Example 2. The function f(x) = 1
x is not uniformly continuous on (0,∞).

Proof. Suppose it is. Let ϵ = 1. Then ∃δ > 0 such that |x−x′| < δ ⇒ | 1x −
1
x′ | <

1. Choose N such that 2
N < δ. Let x = 1

N , x′ = 1
N+2 . Then |x − x′| < δ, but

| 1x − 1
x′ | = 2 > 1, a contradiction.

Theorem 3. If f is uniformly continuous on S and (sn) ⊂ S is Cauchy, then
f(sn) is Cauchy.

Proof. Let ϵ > 0. Choose δ > 0 such that |x−x′| < δ ⇒ |f(x)−f(x′)| < ϵ. Since
(sn) is Cauchy, ∃N such that n,m > N ⇒ |sn − sm| < δ, so |f(sn)− f(sm)| <
ϵ.

Example 3. For f(x) = 1
x on (0,∞), the sequence sn = 1

n is Cauchy, but
f(sn) = n is not Cauchy. Hence f is not uniformly continuous.

6 Extension of Uniformly Continuous Functions

Theorem 4. If f on (a, b) is uniformly continuous, then it can be extended to
a continuous function f̄ on [a, b].

Proof. Let (sn) ⊂ (a, b) be a sequence converging to a. Since f is uniformly
continuous, f(sn) is Cauchy and hence converges to some y ∈ R. Define f̄(a) =
y. Similarly for b. This definition is independent of the sequence chosen. One
can then verify that f̄ is continuous on [a, b].
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