2. Rational Numbers

1 From Natural Numbers to Rational Numbers

Definition 1.1. The set of integers \mathbb{Z} is obtained from \mathbb{N} by including additive inverses and zero:

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

This ensures that subtraction is always defined within \mathbb{Z} .

Definition 1.2. The set of rational numbers $\mathbb Q$ is defined as:

$$\mathbb{Q} = \left\{ \frac{m}{n} \mid m, n \in \mathbb{Z}, \ n \neq 0 \right\} / \sim$$

where $\frac{m_1}{n_1} \sim \frac{m_2}{n_2}$ if and only if $m_1 n_2 = m_2 n_1$.

2 Algebraic Numbers and Irrationality

Definition 2.1. A number α is called *algebraic* if it satisfies a polynomial equation:

$$c_n \alpha^n + c_{n-1} \alpha^{n-1} + \dots + c_1 \alpha + c_0 = 0$$

where $c_0, c_1, \ldots, c_n \in \mathbb{Z}$, $c_n \neq 0$, and $n \geq 1$.

Theorem 2.2 (Rational Root Theorem). Let $c_0, c_1, \ldots, c_n \in \mathbb{Z}$ with $c_n \neq 0$ and $c_0 \neq 0$. Suppose $\gamma \in \mathbb{Q}$ satisfies:

$$c_n \gamma^n + c_{n-1} \gamma^{n-1} + \dots + c_1 \gamma + c_0 = 0$$

Write $\gamma = \frac{c}{d}$ in lowest terms (i.e., gcd(c,d) = 1). Then c divides c_0 and d divides c_n .

Proof. Substituting $\gamma = \frac{c}{d}$ into the equation and multiplying through by d^n gives:

$$c_n c^n + c_{n-1} c^{n-1} d + \dots + c_1 c d^{n-1} + c_0 d^n = 0$$

Since d divides the left-hand side and gcd(d, c) = 1, we conclude $d \mid c_n$. Similarly, since c divides the left-hand side and gcd(c, d) = 1, we have $c \mid c_0$.

Corollary 2.3. Any rational solution to the monic polynomial equation:

$$x^{n} + c_{n-1}x^{n-1} + \dots + c_{1}x + c_{0} = 0$$
 with $c_{0}, \dots, c_{n-1} \in \mathbb{Z}, c_{0} \neq 0$

must be an integer that divides c_0 .

Example 2.4 (Irrationality of $\sqrt{2}$). The number $\sqrt{2}$ is irrational.

Proof. Suppose $\sqrt{2} = \frac{c}{d}$ in lowest terms. Then $c^2 = 2d^2$, so c is even. Write c = 2k, then $4k^2 = 2d^2$, so $d^2 = 2k^2$, making d even as well. This contradicts $\gcd(c,d) = 1$.

Example 2.5 (Irrationality of $6^{1/3}$). The cube root of 6 is irrational.

Proof. $\sqrt[3]{6}$ satisfies $x^3 - 6 = 0$. By the Rational Root Theorem, any rational root must be an integer dividing 6. Checking $\pm 1, \pm 2, \pm 3, \pm 6$ shows none satisfy the equation.

Example 2.6 (Irrationality of Nested Radical). The number $\sqrt{2+\sqrt[3]{5}}$ is irrational.

Proof. Let $\gamma = \sqrt{2 + \sqrt[3]{5}}$. Then $\gamma^2 = 2 + \sqrt[3]{5}$, so $(\gamma^2 - 2)^3 = 5$. Expanding gives:

$$\gamma^6 - 6\gamma^4 + 12\gamma^2 - 13 = 0$$

By the Rational Root Theorem, any rational root must be an integer dividing 13. Checking $\pm 1, \pm 13$ shows none satisfy the equation.

Homework Problems

 $2,\,4,\,5,\,7$