23. Power Series

Consider a power series of the form

$$\sum_{n=0}^{\infty} a_n x^n, \quad a_n \in \mathbb{R},$$

where x is the variable and a_n are the coefficients.

Note: The series always converges when x = 0 (with the convention $0^0 = 1$).

Theorem 1 (Radius of Convergence). Let

$$\beta = \limsup_{n \to \infty} |a_n|^{\frac{1}{n}} \quad and \quad R = \frac{1}{\beta}.$$

Then the power series $\sum a_n x^n$:

- Converges absolutely for |x| < R
- Diverges for |x| > R

The number R is called the **radius of convergence**.

Proof. Apply the root test:

$$\limsup_{n \to \infty} |a_n x^n|^{\frac{1}{n}} = \limsup_{n \to \infty} |x| \cdot |a_n|^{\frac{1}{n}} = |x| \cdot \beta.$$

Consider three cases:

Case 1: $0 < \beta < \infty \Leftrightarrow 0 < R < +\infty$

If |x| < R, then

$$|x| \cdot \beta < R \cdot \frac{1}{R} = 1 \Rightarrow \sum a_n x^n$$
 converges absolutely.

If |x| > R, then

$$|x| \cdot \beta > 1 \Rightarrow \sum a_n x^n$$
 diverges.

Case 2: $\beta = 0 \Rightarrow R = +\infty$

Then $|x| \cdot \beta = 0 < 1$ for all x, so the series converges for all $x \in \mathbb{R}$.

Case 3: $\beta = +\infty \Rightarrow R = 0$

For any $x \neq 0$, $|x| \cdot \beta = +\infty > 1$, so the series diverges for all $x \neq 0$. \square

Remark 1. The ratio test can also be applied to determine the radius of convergence, but we skip the details here.

Example 1.

$$\sum_{n=0}^{\infty} \frac{1}{n!} x^n$$

Using the ratio test:

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{n+1} \to 0 \quad as \ n \to \infty,$$

so $R = +\infty$. In fact, this series represents e^x .

Example 2.

$$\sum_{n=0}^{\infty} x^n$$

Here R = 1. When $x = \pm 1$, the series diverges.

Example 3.

$$\sum_{n=1}^{\infty} \frac{1}{n} x^n$$

Radius of convergence R = 1. At the endpoints:

- x = 1: $\sum \frac{1}{n}$ diverges (harmonic series)
- x = -1: $\sum \frac{(-1)^n}{n}$ converges (alternating harmonic series)

Example 4.

$$\sum_{n=1}^{\infty} \frac{1}{n^2} x^n$$

Radius of convergence R = 1. The series converges when $x = \pm 1$.

Example 5.

$$\sum_{n=0}^{\infty} n! x^n$$

Here R = 0, and the series diverges for all $x \neq 0$.

Example 6.

$$\sum_{n=0}^{\infty} 2^{-n} x^{3^n}$$

To find the radius of convergence:

$$\limsup_{n \to \infty} (2^{-n})^{\frac{1}{3^n}} = 2^{-\limsup \frac{n}{3^n}} = 2^0 = 1,$$

so R=1.

Definition 1 (General Power Series). More generally, we can consider power series centered at x_0 :

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n.$$

The radius of convergence R is defined similarly, and the series converges absolutely for $|x - x_0| < R$, diverges for $|x - x_0| > R$.