Convergence of Functions

Definition 1 (Pointwise Convergence). Let (f_n) be a sequence of functions defined on $S \subseteq \mathbb{R}$. We say (f_n) converges **pointwise** to f if

$$\lim_{n \to \infty} f_n(x) = f(x) \quad \text{for all } x \in S.$$

Example 1. Let $f_n(x) = (1 - |x|)^n$ for $x \in (-1, 1)$. Then

$$\lim_{n \to \infty} f_n(x) = 0 \quad \text{for all } |x| < 1.$$

So on (-1,1), $f_n \to f$ pointwise, where f(x) = 0.

Remark 1. Pointwise convergence means:

$$\forall x \in S, \forall \epsilon > 0, \exists N \text{ such that } n > N \Rightarrow |f_n(x) - f(x)| < \epsilon.$$

Note: N may depend on x.

Definition 2 (Uniform Convergence). (f_n) converges to f uniformly on S if

$$\forall \epsilon > 0, \exists N \text{ such that } n > N \Rightarrow |f_n(x) - f(x)| < \epsilon \text{ for all } x \in S.$$

Remark 2. For uniform convergence, N depends only on ϵ and not on x.

Example 2. Let $f_n(x) = (1 - |x|)^n$ for $x \in (-1, 1)$, and define

$$f(x) = \begin{cases} 0 & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases}$$

Then $f_n \to f$ pointwise but not uniformly.

Proof. Suppose for contradiction that $f_n \to f$ uniformly. Then for $\epsilon = \frac{1}{2}$, there exists N such that for all n > N and all $x \in (-1, 1)$,

$$|f_n(x) - f(x)| < \frac{1}{2}.$$

In particular, for $x \neq 0$, $|(1 - |x|)^n| < \frac{1}{2}$ for all n > N.

Take $x = 1 - 2^{-\frac{1}{N+2}} \in (-1, 1)$. Then

$$|(1-|x|)^n| = 2^{-\frac{n}{N+2}}.$$

For n = N + 1, we have $\frac{n}{N+2} < 1$, so

$$2^{-\frac{n}{N+2}} > 2^{-1} = \frac{1}{2},$$

which is a contradiction.

Example 3. Let $f_n(x) = \frac{1}{n}\sin(nx)$. Then $f_n \to 0$ uniformly for all $x \in \mathbb{R}$.

Example 4. Let $f_n(x) = nx^n$ for $x \in [0,1)$. Then $f_n \to 0$ pointwise but not uniformly.

Take $x_n = n^{-\frac{1}{n}}$. Then

$$f_n(x_n) = n \cdot (n^{-\frac{1}{n}})^n = n \cdot n^{-1} = 1 \not\to 0.$$

Example 5. Let $f_n(x) = x^n$ for $x \in [0, 1]$, and define

$$f(x) = \begin{cases} 0 & \text{if } x \neq 1\\ 1 & \text{if } x = 1 \end{cases}$$

Then $f_n \to f$ pointwise but not uniformly.

Theorem 1 (Uniform Limit of Continuous Functions). If (f_n) is a sequence of continuous functions that converges uniformly to f on S, then f is continuous on S.

Proof. Let $x_0 \in S$. For any $x \in S$ and $\epsilon > 0$, we have:

$$|f(x) - f(x_0)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(x_0)| + |f_n(x_0) - f(x_0)|.$$

Since $f_n \to f$ uniformly, there exists N such that for all n > N and all $x \in S$,

$$|f(x) - f_n(x)| < \frac{\epsilon}{3}.$$

Since f_n is continuous at x_0 , there exists $\delta > 0$ such that

$$|x-x_0|<\delta \Rightarrow |f_n(x)-f_n(x_0)|<\frac{\epsilon}{3}.$$

Therefore, for $|x - x_0| < \delta$,

$$|f(x) - f(x_0)| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$

So f is continuous at x_0 .

Remark 3 (Reformulation of Uniform Convergence). $(f_n) \to f$ uniformly on $S \subseteq \mathbb{R}$ if and only if

$$\lim_{n \to \infty} \sup_{x \in S} |f(x) - f_n(x)| = 0.$$

Example 6. Let $f_n(x) = \frac{x}{1+nx^2}$ and f(x) = 0. Then $f_n \to f$ uniformly on \mathbb{R} .

To find the supremum, consider the derivative:

$$\left(\frac{x}{1+nx^2}\right)' = \frac{1-nx^2}{(1+nx^2)^2} = 0 \Rightarrow x = \pm \frac{1}{\sqrt{n}}.$$

Then

$$\sup_{x \in \mathbb{R}} |f_n(x)| = \frac{1/\sqrt{n}}{1 + n(1/n)} = \frac{1}{2\sqrt{n}} \to 0.$$

So $\sup_{x \in S} |f_n(x)| \to 0$, and the convergence is uniform.