
More on Uniform Convergence

We will use the following facts about integration:

1. If g, h are integrable on [a, b] and g ≤ h, then∫ b

a

g(x) dx ≤
∫ b

a

h(x) dx.

2. If g is integrable on [a, b], then∣∣∣∣∫ b

a

g(x) dx

∣∣∣∣ ≤ ∫ b

a

|g(x)| dx.

Theorem 1 (Interchange of Limit and Integral). Let fn be continuous on
[a, b] and suppose fn → f uniformly. Then

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

f(x) dx.

Proof. By the previous lecture, f is continuous (hence integrable) and fn−f
is continuous and integrable.

For any ϵ > 0, there exists N such that for all n > N and all x ∈ [a, b],

|fn(x)− f(x)| < ϵ

b− a
.

Then∣∣∣∣∫ b

a

fn(x) dx−
∫ b

a

f(x) dx

∣∣∣∣ = ∣∣∣∣∫ b

a

(fn(x)− f(x)) dx

∣∣∣∣ ≤ ∫ b

a

|fn(x)−f(x)| dx ≤
∫ b

a

ϵ

b− a
dx = ϵ.

Definition 1 (Uniformly Cauchy Sequence). A sequence (fn) of functions
on S ⊆ R is uniformly Cauchy on S if

∀ε > 0,∃N such that |fn(x)− fm(x)| < ε for all m,n > N and all x ∈ S.

Theorem 2 (Completeness for Uniform Convergence). Let (fn) be a sequence
of functions on S. If (fn) is uniformly Cauchy, then there exists f on S such
that fn → f uniformly.
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Proof. First, define f . For each x0 ∈ S, the sequence (fn(x0)) is Cauchy in
R, hence converges. Define

f(x0) = lim
n→∞

fn(x0).

Now show uniform convergence. Given ε > 0, there exists N such that
for all m,n > N and all x ∈ S,

|fn(x)− fm(x)| <
ε

2
.

Fix x ∈ S and m > N . Taking n → ∞ and using continuity of the absolute
value function:

lim
n→∞

|fn(x)− fm(x)| ≤
ε

2
⇒ |f(x)− fm(x)| ≤

ε

2
< ε.

Thus fm → f uniformly.

Example 1 (Weierstrass Function). Let g : R → R be a continuous, piece-
wise linear function with period 4, defined by:

g(x) =


x for 0 ≤ x ≤ 1

2− x for 1 ≤ x ≤ 3

x− 4 for 3 ≤ x ≤ 4

Define gn(x) = g(4nx) and consider the series

∞∑
n=0

(
3

4

)n

gn(x).

Let fn(x) =
∑n

k=0

(
3
4

)k
gk(x). Then for n > m,

|fn(x)− fm(x)| =

∣∣∣∣∣
n∑

k=m+1

(
3

4

)k

gk(x)

∣∣∣∣∣ ≤
n∑

k=m+1

(
3

4

)k

.

Since
∑(

3
4

)k
converges, (fn) is uniformly Cauchy. Thus

∑∞
n=0

(
3
4

)n
gn(x)

converges uniformly to a continuous function that is nowhere differentiable.

Theorem 3 (Continuity of Uniform Limits of Series). Let
∑∞

k=0 gk be a series
of functions defined on S ⊆ R. If each gk is continuous on S and the series
converges uniformly on S, then the sum represents a continuous function on
S.
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Proof. Let fn =
∑n

k=1 gk. Then each fn is continuous and fn → f uniformly,
so f is continuous.

Theorem 4 (Weierstrass M-Test). Let (Mk) be a sequence of non-negative
real numbers with

∑
Mk < ∞. If |gk(x)| ≤ Mk for all x ∈ S, then

∑
gk

converges uniformly on S.

Proof. Check the Cauchy criterion. Since
∑

Mk converges, for any ϵ > 0,
there exists N such that for all n ≥ m > N ,

n∑
k=m

Mk < ϵ.

Then for all x ∈ S,∣∣∣∣∣
n∑

k=m

gk(x)

∣∣∣∣∣ ≤
n∑

k=m

|gk(x)| ≤
n∑

k=m

Mk < ϵ.

So the series converges uniformly.

Example 2. Consider
∑∞

n=1 2
−nxn on (−2, 2). The radius of convergence is

R = 2.
For any 0 < a < 2, on [−a, a] we have:

|2−nxn| ≤ 2−nan =
(a
2

)n

.

Since
∑(

a
2

)n
converges, by the Weierstrass M-test, the series converges uni-

formly on [−a, a] to a continuous function.
However, the convergence is not uniform on (−2, 2) because:

sup
{
|2−nxn| : x ∈ (−2, 2)

}
= 1 ̸→ 0.

Remark 1. If
∑

gn converges uniformly on S, then limn→∞ sup{|gn(x)| :
x ∈ S} = 0.

Proof. Since
∑

gn converges uniformly, it satisfies the Cauchy criterion. For
any ϵ > 0, there exists N such that for all n > m > N and all x ∈ S,∣∣∣∣∣

n∑
k=m

gk(x)

∣∣∣∣∣ < ϵ.

In particular, for n > N , taking m = n gives |gn(x)| < ϵ for all x ∈ S, so
sup{|gn(x)| : x ∈ S} < ϵ.
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Example 3 (Counterexample to Converse of M-Test). There exist uniformly
convergent series for which no convergent majorant series exists.

Take S = R, g1(x) = x, and gn(x) = 0 for n ̸= 1. This series converges
uniformly but no sequence Mn with

∑
Mn < ∞ can majorize it.

Even for compact S, consider gn(x) = 1
n
sin(nx). Then

∑
gn converges

uniformly (by Dirichlet’s test), but
∑

1
n
= ∞.

Theorem 5 (Dirichlet’s Test for Uniform Convergence). Let (an(x)) and
(bn(x)) be sequences of functions on S such that:

1. The partial sums AN(x) =
∑N

n=1 an(x) are uniformly bounded on S.

2. bn(x) → 0 uniformly on S.

3. (bn(x)) is monotone in n for each fixed x.

Then
∑

an(x)bn(x) converges uniformly on S.

Remark 2. For trigonometric series, we have the identity:

N∑
n=1

sin(nx) =
sin

(
Nx
2

)
sin

(
(N+1)x

2

)
sin

(
x
2

) ,

which shows that the partial sums of
∑

sin(nx) are uniformly bounded away
from multiples of 2π.
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