More on Uniform Convergence

We will use the following facts about integration:

1. If g, h are integrable on [a, b] and $g \leq h$, then

$$\int_{a}^{b} g(x) \, dx \le \int_{a}^{b} h(x) \, dx.$$

2. If g is integrable on [a, b], then

$$\left| \int_{a}^{b} g(x) \, dx \right| \le \int_{a}^{b} |g(x)| \, dx.$$

Theorem 1 (Interchange of Limit and Integral). Let f_n be continuous on [a,b] and suppose $f_n \to f$ uniformly. Then

$$\lim_{n \to \infty} \int_a^b f_n(x) \, dx = \int_a^b f(x) \, dx.$$

Proof. By the previous lecture, f is continuous (hence integrable) and $f_n - f$ is continuous and integrable.

For any $\epsilon > 0$, there exists N such that for all n > N and all $x \in [a, b]$,

$$|f_n(x) - f(x)| < \frac{\epsilon}{b-a}.$$

Then

$$\left| \int_a^b f_n(x) \, dx - \int_a^b f(x) \, dx \right| = \left| \int_a^b (f_n(x) - f(x)) \, dx \right| \le \int_a^b \left| f_n(x) - f(x) \right| dx \le \int_a^b \frac{\epsilon}{b - a} \, dx = \epsilon.$$

Definition 1 (Uniformly Cauchy Sequence). A sequence (f_n) of functions on $S \subseteq \mathbb{R}$ is uniformly Cauchy on S if

 $\forall \varepsilon > 0, \exists N \text{ such that } |f_n(x) - f_m(x)| < \varepsilon \text{ for all } m, n > N \text{ and all } x \in S.$

Theorem 2 (Completeness for Uniform Convergence). Let (f_n) be a sequence of functions on S. If (f_n) is uniformly Cauchy, then there exists f on S such that $f_n \to f$ uniformly.

Proof. First, define f. For each $x_0 \in S$, the sequence $(f_n(x_0))$ is Cauchy in \mathbb{R} , hence converges. Define

$$f(x_0) = \lim_{n \to \infty} f_n(x_0).$$

Now show uniform convergence. Given $\varepsilon > 0$, there exists N such that for all m, n > N and all $x \in S$,

$$|f_n(x) - f_m(x)| < \frac{\varepsilon}{2}.$$

Fix $x \in S$ and m > N. Taking $n \to \infty$ and using continuity of the absolute value function:

$$\lim_{n \to \infty} |f_n(x) - f_m(x)| \le \frac{\varepsilon}{2} \Rightarrow |f(x) - f_m(x)| \le \frac{\varepsilon}{2} < \varepsilon.$$

Thus $f_m \to f$ uniformly.

Example 1 (Weierstrass Function). Let $g : \mathbb{R} \to \mathbb{R}$ be a continuous, piecewise linear function with period 4, defined by:

$$g(x) = \begin{cases} x & \text{for } 0 \le x \le 1\\ 2 - x & \text{for } 1 \le x \le 3\\ x - 4 & \text{for } 3 \le x \le 4 \end{cases}$$

Define $g_n(x) = g(4^n x)$ and consider the series

$$\sum_{n=0}^{\infty} \left(\frac{3}{4}\right)^n g_n(x).$$

Let $f_n(x) = \sum_{k=0}^n \left(\frac{3}{4}\right)^k g_k(x)$. Then for n > m,

$$|f_n(x) - f_m(x)| = \left| \sum_{k=m+1}^n \left(\frac{3}{4} \right)^k g_k(x) \right| \le \sum_{k=m+1}^n \left(\frac{3}{4} \right)^k.$$

Since $\sum \left(\frac{3}{4}\right)^k$ converges, (f_n) is uniformly Cauchy. Thus $\sum_{n=0}^{\infty} \left(\frac{3}{4}\right)^n g_n(x)$ converges uniformly to a continuous function that is nowhere differentiable.

Theorem 3 (Continuity of Uniform Limits of Series). Let $\sum_{k=0}^{\infty} g_k$ be a series of functions defined on $S \subseteq \mathbb{R}$. If each g_k is continuous on S and the series converges uniformly on S, then the sum represents a continuous function on S.

Proof. Let $f_n = \sum_{k=1}^n g_k$. Then each f_n is continuous and $f_n \to f$ uniformly, so f is continuous.

Theorem 4 (Weierstrass M-Test). Let (M_k) be a sequence of non-negative real numbers with $\sum M_k < \infty$. If $|g_k(x)| \leq M_k$ for all $x \in S$, then $\sum g_k$ converges uniformly on S.

Proof. Check the Cauchy criterion. Since $\sum M_k$ converges, for any $\epsilon > 0$, there exists N such that for all $n \geq m > N$,

$$\sum_{k=m}^{n} M_k < \epsilon.$$

Then for all $x \in S$,

$$\left| \sum_{k=m}^{n} g_k(x) \right| \le \sum_{k=m}^{n} |g_k(x)| \le \sum_{k=m}^{n} M_k < \epsilon.$$

So the series converges uniformly.

Example 2. Consider $\sum_{n=1}^{\infty} 2^{-n} x^n$ on (-2,2). The radius of convergence is R=2.

For any 0 < a < 2, on [-a, a] we have:

$$|2^{-n}x^n| \le 2^{-n}a^n = \left(\frac{a}{2}\right)^n$$
.

Since $\sum {\left(\frac{a}{2}\right)}^n$ converges, by the Weierstrass M-test, the series converges uniformly on [-a,a] to a continuous function.

However, the convergence is not uniform on (-2,2) because:

$$\sup \{|2^{-n}x^n| : x \in (-2,2)\} = 1 \not\to 0.$$

Remark 1. If $\sum g_n$ converges uniformly on S, then $\lim_{n\to\infty} \sup\{|g_n(x)| : x \in S\} = 0$.

Proof. Since $\sum g_n$ converges uniformly, it satisfies the Cauchy criterion. For any $\epsilon > 0$, there exists N such that for all n > m > N and all $x \in S$,

$$\left| \sum_{k=m}^{n} g_k(x) \right| < \epsilon.$$

In particular, for n > N, taking m = n gives $|g_n(x)| < \epsilon$ for all $x \in S$, so $\sup\{|g_n(x)| : x \in S\} < \epsilon$.

Example 3 (Counterexample to Converse of M-Test). There exist uniformly convergent series for which no convergent majorant series exists.

Take $S = \mathbb{R}$, $g_1(x) = x$, and $g_n(x) = 0$ for $n \neq 1$. This series converges

uniformly but no sequence M_n with $\sum M_n < \infty$ can majorize it. Even for compact S, consider $g_n(x) = \frac{1}{n}\sin(nx)$. Then $\sum g_n$ converges uniformly (by Dirichlet's test), but $\sum \frac{1}{n} = \infty$.

Theorem 5 (Dirichlet's Test for Uniform Convergence). Let $(a_n(x))$ and $(b_n(x))$ be sequences of functions on S such that:

- 1. The partial sums $A_N(x) = \sum_{n=1}^N a_n(x)$ are uniformly bounded on S.
- 2. $b_n(x) \to 0$ uniformly on S.
- 3. $(b_n(x))$ is monotone in n for each fixed x.

Then $\sum a_n(x)b_n(x)$ converges uniformly on S.

Remark 2. For trigonometric series, we have the identity:

$$\sum_{n=1}^{N} \sin(nx) = \frac{\sin\left(\frac{Nx}{2}\right) \sin\left(\frac{(N+1)x}{2}\right)}{\sin\left(\frac{x}{2}\right)},$$

which shows that the partial sums of $\sum \sin(nx)$ are uniformly bounded away from multiples of 2π .