
Differentiation and Integration of Power Series

Theorem 1 (Uniform Convergence on Compact Intervals). Let
∑∞

n=0 anx
n

be a power series with radius of convergence R > 0 (or R = +∞). If
0 < R1 < R, then the power series converges uniformly on [−R1, R1] to
a continuous function.

Proof. For |x| ≤ R1, we have:

|anxn| ≤ |an|Rn
1 .

But
∑

|an|xn has the same radius of convergence as
∑

anx
n, so

∑
|an|Rn

1 con-
verges. By the Weierstrass M-test,

∑
anx

n converges uniformly on [−R1, R1].
Hence the limit is continuous.

Corollary 1.
∑

anx
n converges to a continuous function on (−R,R), where

R = 1

lim sup |an|
1
n
.

Lemma 1 (Radius of Convergence of Derived Series). If
∑

anx
n has radius

of convergence R, then both

∞∑
n=1

nanx
n−1 and

∞∑
n=0

an
n+ 1

xn+1

also have radius of convergence R.

Proof. Let β = lim sup |an|
1
n , so R = 1

β
. Then:

lim sup(n|an|)
1
n = lim

n→∞
n

1
n · lim sup |an|

1
n = 1 · β = β.

Similarly,

lim sup

(
|an|
n+ 1

) 1
n

= lim
n→∞

(n+ 1)−
1
n · β = 1 · β = β.

Thus both derived series have radius of convergence R.

Theorem 2 (Term-by-Term Integration). Suppose f(x) =
∑∞

n=0 anx
n has

radius of convergence R > 0. Then for |x| < R,∫ x

0

f(t) dt =
∞∑
n=0

an
n+ 1

xn+1.
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Proof. Suppose x < 0 (the case x > 0 is similar). On the interval [x, 0], the
series

∑
ant

n converges uniformly to f(t). Therefore:∫ 0

x

f(t) dt = lim
n→∞

∫ 0

x

n∑
k=0

akt
k dt = lim

n→∞

n∑
k=0

ak

∫ 0

x

tk dt = − lim
n→∞

n∑
k=0

ak
1

k + 1
xk+1 = −

∞∑
k=0

ak
1

k + 1
xk+1.

Rearranging gives the desired result.

Theorem 3 (Term-by-Term Differentiation). Let f(x) =
∑∞

n=0 anx
n have

radius of convergence R > 0. Then f is differentiable on (−R,R) and

f ′(x) =
∞∑
n=1

nanx
n−1 for |x| < R.

Proof. Consider g(x) =
∑∞

n=1 nanx
n−1. This series converges for |x| < R by

the lemma. We can integrate g term by term:∫ x

0

g(t) dt =
∞∑
n=1

anx
n = f(x)− a0 for |x| < R.

Thus, for any 0 < R1 < R and |x| < R,

f(x) =

∫ x

−R1

g(t) dt+ k, where k = a0 −
∫ 0

−R1

g(t) dt.

Since g(t) is continuous (by uniform convergence on compact sets), by the
Fundamental Theorem of Calculus,

f ′(x) = g(x) =
∞∑
n=1

nanx
n−1 for |x| < R.

Example 1 (Geometric Series). We have:

∞∑
n=0

xn =
1

1− x
for |x| < 1.

Differentiating term by term:

∞∑
n=1

nxn−1 =
1

(1− x)2
.
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Integrating term by term:

∞∑
n=0

1

n+ 1
xn+1 =

∫ x

0

1

1− t
dt = − log(1− x) for |x| < 1.

Or equivalently:

log(1 + x) = x− x2

2
+

x3

3
− x4

4
+ · · · for |x| ≤ 1, x ̸= −1.

It turns out this is also true for x = 1, giving:

log 2 = 1− 1

2
+

1

3
− 1

4
+ · · · .

This requires Abel’s theorem.

Theorem 4 (Abel’s Theorem). Suppose
∑∞

n=0 anx
n has radius of conver-

gence 1 and converges at x = 1. Then the function f(x) =
∑∞

n=0 anx
n is

continuous on [0, 1].

Proof. Assume without loss of generality that f(1) =
∑∞

n=0 an = 0 (otherwise
consider f(x)− f(1)). Let

fn(x) =
n−1∑
k=0

akx
k and Sn =

n−1∑
k=0

ak = fn(1).

Since fn → f pointwise on [0, 1] and each fn is continuous, it suffices to show
fn → f uniformly on [0, 1].

For n > m, we have:

fn(x)− fm(x) =
n∑

k=m+1

akx
k =

n∑
k=m+1

(Sk − Sk−1)x
k

=
n∑

k=m+1

Skx
k − x

n∑
k=m+1

Sk−1x
k−1

=
n∑

k=m+1

Skx
k − x

n−1∑
k=m

Skx
k.
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Rearranging gives:

fn(x)− fm(x) = Snx
n − Smx

m+1 + (1− x)
n−1∑

k=m+1

Skx
k.

Since limSn = f(1) = 0, for any ϵ > 0, there exists N such that for all
n > N , |Sn| < ϵ

3
.

Then for n > m > N and x ∈ [0, 1]:

|(1− x)
n−1∑

k=m+1

Skx
k| ≤ ϵ

3
(1− x)

n−1∑
k=m+1

xk =
ϵ

3
(1− x)xm+11− xn−m−1

1− x
<

ϵ

3
.

Also, |Snx
n| < ϵ

3
and |Smx

m+1| < ϵ
3
. Therefore:

|fn(x)− fm(x)| < ϵ for all x ∈ [0, 1],

so (fn) is uniformly Cauchy on [0, 1].

Remark 1. We will return to power series later when we discuss Taylor
series.
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