Differentiation and Integration of Power Series

Theorem 1 (Uniform Convergence on Compact Intervals). Let Y > a,z”
be a power series with radius of convergence R > 0 (or R = +o00). If
0 < Ry < R, then the power series converges uniformly on [—Ry, Ry] to
a continuous function.

Proof. For |x| < Ry, we have:
la,a™| < lan|RY.

But > |a,|x™ has the same radius of convergence as » | a,z™, s0 > |a,| R} con-
verges. By the Weierstrass M-test, Y a,x™ converges uniformly on [— Ry, Ry].
Hence the limit is continuous. O

Corollary 1. ) a,z" converges to a continuous function on (—R, R), where
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Lemma 1 (Radius of Convergence of Derived Series). If Y a,x" has radius
of convergence R, then both
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also have radius of convergence R.

Proof. Let 8 = limsup |a, |, so R = % Then:

limsup(n|an|)% = lim n» - limsup |a,n|% =1-=p.
n—oo

Similarly,
1
imsup [ —— | = lim (n n-f=1-0=p.
Thus both derived series have radius of convergence R. [

Theorem 2 (Term-by-Term Integration). Suppose f(z) = >~ a,z" has
radius of convergence R > 0. Then for |x| < R,
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Proof. Suppose x < 0 (the case > 0 is similar). On the interval [z, 0], the
series Y a,t"™ converges uniformly to f(¢). Therefore:
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Rearranging gives the desired result. O

Theorem 3 (Term-by-Term Differentiation). Let f(z) = >~ a,z™ have
radius of convergence R > 0. Then f is differentiable on (—R, R) and

f(z) = Znana:”’l for |z] < R.
n=1

Proof. Consider g(z) =Y o na,z"'. This series converges for |z| < R by
the lemma. We can integrate g term by term:

/ g(t)dt = Zanx” = f(z) —ao for |z| < R.
0 n=1
Thus, for any 0 < R; < R and |z| < R,

f(x) = /x g(t)dt + k, where k = ay —/ g(t)dt.
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Since ¢(t) is continuous (by uniform convergence on compact sets), by the
Fundamental Theorem of Calculus,

f'(z) =g(x) = Znanx”_l for |z| < R.
n=1

Example 1 (Geometric Series). We have:
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Differentiating term by term:

inx"‘l = ;
— (1 —x)?

1
x
E+1




Integrating term by term:
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271—1—136 :/0 1—_tdt:—log(1—x) for |z| < 1.

Or equivalently:
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—r— < —1.
log(l1+2x)==x 2+3 4+ for|z| <1,z # —1

It turns out this is also true for x =1, giving:

log2=1_+4+ 1 1,
Be= T T3]

This requires Abel’s theorem.

Theorem 4 (Abel’s Theorem). Suppose >~ a,z" has radius of conver-
gence 1 and converges at x = 1. Then the function f(xz) = > 7 ja,a™ is

continuous on [0, 1].

Proof. Assume without loss of generality that f(1) = > °  a, = 0 (otherwise
consider f(x) — f(1)). Let
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fu(z) = Zakxk’ and S, = Zak = fu(1).
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Since f,, — f pointwise on [0, 1] and each f,, is continuous, it suffices to show
fn — f uniformly on [0, 1].
For n > m, we have:

fa(@) = f(z) = Z apz® = Z (Sk — Skq)iﬁk
k=m+1 k=m+1
= Z S,k — Z Sy_qah 1
k=m-+1 k=m+1
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Rearranging gives:

n—1

fo(@) = fin(z) = Sp2”™ — Spa™ ™ + (1 — ) Z Spa”.

k=m-+1

Since lim S,, = f(1) = 0, for any ¢ > 0, there exists N such that for all
n> N, |S,| <3
Then for n > m > N and z € [0, 1]:
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Also, [Spz"| < § and |S,z™ | < §. Therefore:
|fu(x) — fi(z)| <€ forall x €0, 1],
s0 (f») is uniformly Cauchy on [0, 1]. O

Remark 1. We will return to power series later when we discuss Taylor
series.



