Differentiation and Integration of Power Series

Theorem 1 (Uniform Convergence on Compact Intervals). Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series with radius of convergence R > 0 (or $R = +\infty$). If $0 < R_1 < R$, then the power series converges uniformly on $[-R_1, R_1]$ to a continuous function.

Proof. For $|x| \leq R_1$, we have:

$$|a_n x^n| \le |a_n| R_1^n.$$

But $\sum |a_n|x^n$ has the same radius of convergence as $\sum a_n x^n$, so $\sum |a_n|R_1^n$ converges. By the Weierstrass M-test, $\sum a_n x^n$ converges uniformly on $[-R_1, R_1]$. Hence the limit is continuous.

Corollary 1. $\sum a_n x^n$ converges to a continuous function on (-R, R), where $R = \frac{1}{\lim \sup |a_n|^{\frac{1}{n}}}$.

Lemma 1 (Radius of Convergence of Derived Series). If $\sum a_n x^n$ has radius of convergence R, then both

$$\sum_{n=1}^{\infty} n a_n x^{n-1} \quad and \quad \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$$

also have radius of convergence R.

Proof. Let $\beta = \limsup |a_n|^{\frac{1}{n}}$, so $R = \frac{1}{\beta}$. Then:

$$\lim \sup (n|a_n|)^{\frac{1}{n}} = \lim_{n \to \infty} n^{\frac{1}{n}} \cdot \lim \sup |a_n|^{\frac{1}{n}} = 1 \cdot \beta = \beta.$$

Similarly,

$$\lim \sup \left(\frac{|a_n|}{n+1}\right)^{\frac{1}{n}} = \lim_{n \to \infty} (n+1)^{-\frac{1}{n}} \cdot \beta = 1 \cdot \beta = \beta.$$

Thus both derived series have radius of convergence R.

Theorem 2 (Term-by-Term Integration). Suppose $f(x) = \sum_{n=0}^{\infty} a_n x^n$ has radius of convergence R > 0. Then for |x| < R,

$$\int_0^x f(t) \, dt = \sum_{n=0}^\infty \frac{a_n}{n+1} x^{n+1}.$$

Proof. Suppose x < 0 (the case x > 0 is similar). On the interval [x, 0], the series $\sum a_n t^n$ converges uniformly to f(t). Therefore:

$$\int_{x}^{0} f(t) dt = \lim_{n \to \infty} \int_{x}^{0} \sum_{k=0}^{n} a_{k} t^{k} dt = \lim_{n \to \infty} \sum_{k=0}^{n} a_{k} \int_{x}^{0} t^{k} dt = -\lim_{n \to \infty} \sum_{k=0}^{n} a_{k} \frac{1}{k+1} x^{k+1} = -\sum_{k=0}^{\infty} a_{k} \frac{1}{k+1} x^{k+1} = -\sum_{k$$

Rearranging gives the desired result.

Theorem 3 (Term-by-Term Differentiation). Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ have radius of convergence R > 0. Then f is differentiable on (-R, R) and

$$f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}$$
 for $|x| < R$.

Proof. Consider $g(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}$. This series converges for |x| < R by the lemma. We can integrate g term by term:

$$\int_0^x g(t) dt = \sum_{n=1}^\infty a_n x^n = f(x) - a_0 \quad \text{for } |x| < R.$$

Thus, for any $0 < R_1 < R$ and |x| < R,

$$f(x) = \int_{-R_1}^{x} g(t) dt + k$$
, where $k = a_0 - \int_{-R_1}^{0} g(t) dt$.

Since g(t) is continuous (by uniform convergence on compact sets), by the Fundamental Theorem of Calculus,

$$f'(x) = g(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}$$
 for $|x| < R$.

Example 1 (Geometric Series). We have:

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \quad for \ |x| < 1.$$

Differentiating term by term:

$$\sum_{n=1}^{\infty} nx^{n-1} = \frac{1}{(1-x)^2}.$$

Integrating term by term:

$$\sum_{n=0}^{\infty} \frac{1}{n+1} x^{n+1} = \int_0^x \frac{1}{1-t} dt = -\log(1-x) \quad \text{for } |x| < 1.$$

Or equivalently:

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots \quad \text{for } |x| \le 1, x \ne -1.$$

It turns out this is also true for x = 1, giving:

$$\log 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

This requires Abel's theorem.

Theorem 4 (Abel's Theorem). Suppose $\sum_{n=0}^{\infty} a_n x^n$ has radius of convergence 1 and converges at x=1. Then the function $f(x)=\sum_{n=0}^{\infty} a_n x^n$ is continuous on [0,1].

Proof. Assume without loss of generality that $f(1) = \sum_{n=0}^{\infty} a_n = 0$ (otherwise consider f(x) - f(1)). Let

$$f_n(x) = \sum_{k=0}^{n-1} a_k x^k$$
 and $S_n = \sum_{k=0}^{n-1} a_k = f_n(1)$.

Since $f_n \to f$ pointwise on [0, 1] and each f_n is continuous, it suffices to show $f_n \to f$ uniformly on [0, 1].

For n > m, we have:

$$f_n(x) - f_m(x) = \sum_{k=m+1}^n a_k x^k = \sum_{k=m+1}^n (S_k - S_{k-1}) x^k$$
$$= \sum_{k=m+1}^n S_k x^k - x \sum_{k=m+1}^n S_{k-1} x^{k-1}$$
$$= \sum_{k=m+1}^n S_k x^k - x \sum_{k=m}^{n-1} S_k x^k.$$

Rearranging gives:

$$f_n(x) - f_m(x) = S_n x^n - S_m x^{m+1} + (1-x) \sum_{k=m+1}^{n-1} S_k x^k.$$

Since $\lim_{n \to \infty} S_n = f(1) = 0$, for any $\epsilon > 0$, there exists N such that for all $n > N, |S_n| < \frac{\epsilon}{3}.$ Then for n > m > N and $x \in [0, 1]$:

$$|(1-x)\sum_{k=m+1}^{n-1} S_k x^k| \le \frac{\epsilon}{3} (1-x) \sum_{k=m+1}^{n-1} x^k = \frac{\epsilon}{3} (1-x) x^{m+1} \frac{1-x^{n-m-1}}{1-x} < \frac{\epsilon}{3}.$$

Also, $|S_n x^n| < \frac{\epsilon}{3}$ and $|S_m x^{m+1}| < \frac{\epsilon}{3}$. Therefore:

$$|f_n(x) - f_m(x)| < \epsilon$$
 for all $x \in [0, 1]$,

so (f_n) is uniformly Cauchy on [0,1].

Remark 1. We will return to power series later when we discuss Taylor series.