3: Real Numbers

1 Field Structure of Real Numbers

Definition 1.1. A *field* is a set F with two binary operations + and \cdot satisfying:

- 1. Associativity: a + (b + c) = (a + b) + c and a(bc) = (ab)c
- 2. Commutativity: a + b = b + a and ab = ba
- 3. **Identities:** There exist $0, 1 \in F$ with $0 \neq 1$ such that a + 0 = a and $a \cdot 1 = a$
- 4. **Inverses:** For each $a \in F$, there exists $-a \in F$ such that a + (-a) = 0; for each $a \neq 0$, there exists $a^{-1} \in F$ such that $a \cdot a^{-1} = 1$
- 5. Distributivity: a(b+c) = ab + ac

Definition 1.2. A *commutative ring* satisfies all field axioms except possibly the existence of multiplicative inverses.

2 Ordered Field Structure

Definition 2.1. An ordered field is a field F with a relation \leq satisfying:

- 1. **Trichotomy:** For any $a, b \in F$, exactly one of a < b, a = b, or b < a holds
- 2. Antisymmetry: If $a \le b$ and $b \le a$, then a = b
- 3. **Transitivity:** If $a \leq b$ and $b \leq c$, then $a \leq c$
- 4. Translation invariance: If $a \le b$, then $a + c \le b + c$ for all c
- 5. Multiplication by positive elements: If $a \le b$ and $0 \le c$, then $ac \le bc$

Theorem 2.2 (Basic Field Properties). In any field, the following hold:

- 1. Cancellation: $a + c = b + c \Rightarrow a = b$
- 2. Zero product: $a \cdot 0 = 0$ for all a
- 3. Sign rules: (-a)b = -ab and (-a)(-b) = ab
- 4. Multiplicative cancellation: ac = bc and $c \neq 0 \Rightarrow a = b$
- 5. Zero divisor property: $ab = 0 \Rightarrow a = 0$ or b = 0

Proof of (2).

$$a \cdot 0 = a \cdot (0+0)$$

= $a \cdot 0 + a \cdot 0$
 $\Rightarrow 0 = a \cdot 0$ (by additive cancellation)

Theorem 2.3 (Ordered Field Properties). In any ordered field:

1. Order reversal: $a \le b \Rightarrow -b \le -a$

- 2. Multiplication by negatives: $a \le b$ and $c \le 0 \Rightarrow bc \le ac$
- 3. Product of nonnegatives: $0 \le a$ and $0 \le b \Rightarrow 0 \le ab$
- 4. Squares are nonnegative: $0 \le a^2$
- 5. Multiplicative identity: 0 < 1
- 6. Reciprocal preserves order: $0 < a \Rightarrow 0 < a^{-1}$
- 7. Reciprocal reverses order: $0 < a < b \Rightarrow 0 < b^{-1} < a^{-1}$

Proof of (4). For any a, by trichotomy either $a \ge 0$ or $a \le 0$. If $a \ge 0$, then $a^2 \ge 0$ by (3). If $a \le 0$, then $-a \ge 0$ by (1), so $(-a)^2 \ge 0$, but $(-a)^2 = a^2$.

3 Absolute Value and Distance

Definition 3.1. The absolute value of a number a is defined as:

$$|a| = \begin{cases} a & \text{if } a \ge 0\\ -a & \text{if } a < 0 \end{cases}$$

Definition 3.2. The *distance* between two numbers a and b is defined as:

$$dist(a, b) = |a - b|$$

Theorem 3.3 (Properties of Absolute Value). For all numbers a, b:

- 1. Nonnegativity: $|a| \ge 0$
- 2. Multiplicativity: $|ab| = |a| \cdot |b|$
- 3. Triangle inequality: $|a+b| \le |a| + |b|$

Proof of (3). We have $-|a| \le a \le |a|$ and $-|b| \le b \le |b|$. Adding these inequalities gives:

$$-(|a|+|b|) < a+b < |a|+|b|$$

which implies $|a + b| \le |a| + |b|$.

Corollary 3.4 (Triangle Inequality for Distance). For all numbers a, b, c:

$$|a - c| \le |a - b| + |b - c|$$

That is, $dist(a, c) \leq dist(a, b) + dist(b, c)$.

Proof.

$$|a-c| = |(a-b) + (b-c)| < |a-b| + |b-c|$$

by the triangle inequality.