4: Completeness Axiom

1 Bounded Sets and Extremal Elements

Definition 1.1. Let $\emptyset \neq S \subseteq \mathbb{R}$.

- 1. If S contains a largest element s_0 (i.e., $s \leq s_0$ for all $s \in S$), then s_0 is called the maximum of S, denoted max S.
- 2. If S contains a smallest element, then it is called the minimum of S, denoted min S.

Example 1.2. If S is finite, then it always has both maximum and minimum. For example:

- $\max\{-1, 3, 2, 0\} = 3$
- $\min\{-1, 3, 2, 0\} = -1$

Definition 1.3. For $a, b \in \mathbb{R}$ with $a \leq b$:

- $[a, b] = \{x \in \mathbb{R} : a \le x \le b\}$ (closed interval)
- $(a, b) = \{x \in \mathbb{R} : a < x < b\}$ (open interval)

Example 1.4. • $\max[a, b] = b, \min[a, b] = a$

- \bullet (a,b) has no maximum or minimum
- ullet Z and $\mathbb Q$ have no minimum or maximum
- $\min \mathbb{N} = 1$
- $S = \{r \in \mathbb{Q} : 0 \le r \le \sqrt{2}\}$ has no maximum since $\sqrt{2} \notin S$
- $S = \{\frac{1}{n} : n \in \mathbb{N}\}$ has no minimum since $0 \notin S$

2 Boundedness

Definition 2.1. Let $\emptyset \neq S \subseteq \mathbb{R}$.

- 1. If there exists $M \in \mathbb{R}$ such that $s \leq M$ for all $s \in S$, then M is called an *upper bound* of S and S is said to be *bounded above*.
- 2. If there exists $m \in \mathbb{R}$ such that $m \leq s$ for all $s \in S$, then m is called a *lower bound* of S and S is said to be *bounded below*.
- 3. S is bounded if it is bounded both above and below, i.e., there exist $m, M \in \mathbb{R}$ such that $S \subseteq [m, M]$.

Example 2.2. • If $\max S$ exists, then it is an upper bound of S

- ullet If min S exists, then it is a lower bound of S
- For (3,5), both 5 and 6 are upper bounds
- $\mathbb{Z}, \mathbb{Q}, \mathbb{N}, \mathbb{R}$ are not bounded above
- $S = \{r \in \mathbb{Q} : r \leq \sqrt{2}\}$ has no maximum but is bounded above (e.g., by 2 and $\sqrt{2}$)
- $S = \{\frac{1}{n} : n \in \mathbb{N}\}$ has 0 as its greatest lower bound

3 Supremum and Infimum

Definition 3.1. Let $\emptyset \neq S \subseteq \mathbb{R}$.

- 1. If S is bounded above and M is the least upper bound, then M is called the *supremum* of S, denoted $\sup S$.
- 2. If S is bounded below and m is the greatest lower bound, then m is called the infimum of S, denoted inf S.

Theorem 3.2 (Characterization of Supremum). If S is bounded above, then $M = \sup S$ if and only if:

- 1. $s \leq M$ for all $s \in S$
- 2. For any $M_1 < M$, there exists $s \in S$ such that $s > M_1$

Example 3.3. If S has a maximum, then max $S = \sup S$. For example:

$$\sup\{r\in\mathbb{Q}:r\leq\sqrt{2}\}=\sqrt{2}$$

4 Completeness Axiom

Axiom 1 (Completeness Axiom). Every nonempty subset S of \mathbb{R} that is bounded above has a least upper bound. That is, $\sup S$ exists and is a real number.

Theorem 4.1. \mathbb{Q} is not complete.

Proof. Consider $S = \{r \in \mathbb{Q} : r \le \sqrt{2}\} \subseteq \mathbb{Q}$. Then $\sup S = \sqrt{2} \notin \mathbb{Q}$. Note that S can be defined purely using \mathbb{Q} as $S = \{r \in \mathbb{Q} : r^2 \le 2\} \cup \{r \in \mathbb{Q} : r < 0\}$.

Theorem 4.2. Every nonempty subset S of \mathbb{R} that is bounded below has a greatest lower bound inf S.

Proof. Suppose S is bounded below by m. Define $-S = \{-s : s \in S\}$. Then -S is bounded above by -m. By the completeness axiom, -S has a least upper bound M. Then $-M = \inf S$.

Homework Problems

4.2, 4.6, 4.10, 4.12, 4.14