5. Archimedean Property

Archimedean Property 1

Theorem 1.1 (Archimedean Property of \mathbb{R}). If a>0 and b>0, then there exists a positive integer n such that na > b.

Proof. Suppose, for contradiction, that there exist a>0 and b>0 such that $na\leq b$ for all $n\in\mathbb{N}$. Then b is an upper bound for the set $S = \{na : n \in \mathbb{N}\}.$

By the completeness axiom, sup S exists. Denote $S_0 = \sup S$. Since a > 0, we have $S_0 - a < S_0$. As S_0 is the least upper bound, there exists $n_0a \in S$ such that $n_0a > S_0 - a$. But then $(n_0 + 1)a > S_0$, which contradicts that S_0 is an upper bound for S. Therefore, the assumption is false and the theorem

Corollary 1.2. If a > 0, then there exists $n \in \mathbb{N}$ such that $a > \frac{1}{n}$.

Proof. Apply the Archimedean property with b=1 to get na>1, so $a>\frac{1}{n}$.

Corollary 1.3. If b > 0, then there exists $n \in \mathbb{N}$ such that b < n.

Proof. Apply the Archimedean property with a = 1 to get n > b.

$\mathbf{2}$ Denseness of Rational Numbers

Theorem 2.1 (Denseness of \mathbb{Q} in \mathbb{R}). If $a, b \in \mathbb{R}$ with a < b, then there exists $r \in \mathbb{Q}$ such that a < r < b.

Proof. We want to find $m \in \mathbb{Z}$ and $n \in \mathbb{N}$ such that $a < \frac{m}{n} < b$, or equivalently, na < m < nb. Since b-a > 0, by the Archimedean property, there exists $n \in \mathbb{N}$ such that n(b-a) > 1, so nb-na > 1. nb < k.

Let $K = \{j \in \mathbb{Z} : -k \le j \le k\}$ and consider the set $\{j \in K : na < j\}$. This set is finite and nonempty (it contains k). Let $m = \min\{j \in K : na < j\}$.

Since m > -k, we have $m-1 \in K$. By the minimality of m, we have $m-1 \le na$. Therefore:

$$na < m \leq na + 1 < nb$$

So na < m < nb, which implies $a < \frac{m}{n} < b$.

Homework Problems

5.1, 5.2, 5.3, 5.4, 5.5, 5.6