Limit Theorems

Theorem 1 (Important Special Limits). The following limits hold:

- 1. For any p > 0, $\lim_{n \to \infty} \frac{1}{n^p} = 0$.
- 2. If |a| < 1, then $\lim_{n \to \infty} a^n = 0$.
- 3. $\lim_{n\to\infty} n^{1/n} = 1$.
- 4. For any a > 0, $\lim_{n \to \infty} a^{1/n} = 1$.

Proof. (Proof sketches)

- 1. For $\epsilon > 0$, choose $N = \epsilon^{-1/p}$. Then for n > N, $\left| \frac{1}{n^p} \right| < \frac{1}{N^p} = \epsilon$.
- 2. Write $|a|=\frac{1}{1+b}$ for some b>0. Then $|a^n|=\frac{1}{(1+b)^n}$. By Bernoulli's inequality, $(1+b)^n\geq 1+nb>nb$, so $|a^n|<\frac{1}{nb}$. For $\epsilon>0$, choose $N>\frac{1}{\epsilon b}$.
- 3. Let $S_n = n^{1/n} 1$, so $n = (1 + S_n)^n$. Using the Binomial Theorem for $n \ge 2$:

$$n > \binom{n}{2} S_n^2 = \frac{n(n-1)}{2} S_n^2.$$

Solving gives $S_n^2 < \frac{2}{n-1}$, so $0 \le S_n < \sqrt{\frac{2}{n-1}}$. By the Sandwich Theorem and (1), $S_n \to 0$, so $n^{1/n} \to 1$.

4. If a > 1, then for large n, $1 \le a^{1/n} \le n^{1/n}$. Apply the Sandwich Theorem using (3). If 0 < a < 1, then $\frac{1}{a} > 1$, and $a^{1/n} = \frac{1}{(1/a)^{1/n}} \to \frac{1}{1} = 1$.

Definition 1 (Divergence to Infinity). We write $\lim_{n\to\infty} s_n = \infty$ if for every real number M, there exists a number N such that $s_n > M$ for all n > N.

Example 1. $\lim_{n\to\infty} n^2 = \infty$.

Theorem 2 (Operations with Infinite Limits). Suppose $\lim_{n\to\infty} S_n = \infty$.

- 1. If $\lim_{n\to\infty} t_n = t > 0$ (a positive finite limit) or $\lim_{n\to\infty} t_n = \infty$, then $\lim_{n\to\infty} (S_n t_n) = \infty$.
- 2. If $S_n > 0$ for all n, then $\lim_{n \to \infty} S_n = \infty$ if and only if $\lim_{n \to \infty} \frac{1}{S_n} = 0$.

Proof. (Proof sketches)

1. Since t_n is eventually positive and bounded away from zero (or tends to infinity), we can find a positive lower bound m for t_n . For any M > 0, since $S_n \to \infty$, we can find N such that $S_n > M/m$ for n > N. Then $S_n t_n > (M/m) \cdot m = M$.

- 2. (\Rightarrow): Given $\epsilon > 0$, let $M = 1/\epsilon$. Since $S_n \to \infty$, there exists N such that for all n > N, $S_n > M$. Then $\left| \frac{1}{S_n} 0 \right| = \frac{1}{S_n} < \frac{1}{M} = \epsilon$. (\Leftarrow): The converse is similar and is left as an exercise.