
Limit Theorems

Theorem 1 (Important Special Limits). The following limits hold:

1. For any p > 0, limn→∞
1
np = 0.

2. If |a| < 1, then limn→∞ an = 0.

3. limn→∞ n1/n = 1.

4. For any a > 0, limn→∞ a1/n = 1.

Proof. (Proof sketches)

1. For ϵ > 0, choose N = ϵ−1/p. Then for n > N ,
∣∣ 1
np

∣∣ < 1
Np = ϵ.

2. Write |a| = 1
1+b for some b > 0. Then |an| = 1

(1+b)n . By Bernoulli’s

inequality, (1+ b)n ≥ 1+nb > nb, so |an| < 1
nb . For ϵ > 0, choose N > 1

ϵb .

3. Let Sn = n1/n − 1, so n = (1 + Sn)
n. Using the Binomial Theorem for

n ≥ 2:

n >

(
n

2

)
S2
n =

n(n− 1)

2
S2
n.

Solving gives S2
n < 2

n−1 , so 0 ≤ Sn <
√

2
n−1 . By the Sandwich Theorem

and (1), Sn → 0, so n1/n → 1.

4. If a > 1, then for large n, 1 ≤ a1/n ≤ n1/n. Apply the Sandwich Theorem
using (3). If 0 < a < 1, then 1

a > 1, and a1/n = 1
(1/a)1/n

→ 1
1 = 1.

Definition 1 (Divergence to Infinity). We write limn→∞ sn = ∞ if for every
real number M , there exists a number N such that sn > M for all n > N .

Example 1. limn→∞ n2 = ∞.

Theorem 2 (Operations with Infinite Limits). Suppose limn→∞ Sn = ∞.

1. If limn→∞ tn = t > 0 (a positive finite limit) or limn→∞ tn = ∞, then
limn→∞(Sntn) = ∞.

2. If Sn > 0 for all n, then limn→∞ Sn = ∞ if and only if limn→∞
1
Sn

= 0.

Proof. (Proof sketches)

1. Since tn is eventually positive and bounded away from zero (or tends to
infinity), we can find a positive lower bound m for tn. For any M > 0,
since Sn → ∞, we can find N such that Sn > M/m for n > N . Then
Sntn > (M/m) ·m = M .
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2. (⇒): Given ϵ > 0, let M = 1/ϵ. Since Sn → ∞, there exists N such that

for all n > N , Sn > M . Then
∣∣∣ 1
Sn

− 0
∣∣∣ = 1

Sn
< 1

M = ϵ.

(⇐): The converse is similar and is left as an exercise.
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